clickhouse-压测

本文介绍了如何使用ssb-dbgen生成大规模数据集,并详细说明了在ClickHouse中进行数据准备、表结构创建以及使用clickhouse-benchmark进行基准测试的过程,展示了查询性能、内存使用和CPU占用情况。

一、数据集准备

数据集可以使用官网数据集,也可以用ssb-dbgen来准备

1.准备数据

这里最后生成表的数据行数为60亿行,数据量为300G左右

git clone https://github.com/vadimtk/ssb-dbgen.git
cd ssb-dbgen/
make

1.1 生成数据

# -s 指生成多少G的数据
$ ./dbgen -s 40 -T c
$ ./dbgen -s 40 -T l
$ ./dbgen -s 40 -T p
$ ./dbgen -s 40 -T s

1.2 创建表

CREATE TABLE customer
(
        C_CUSTKEY       UInt32,
        C_NAME          String,
        C_ADDRESS       String,
        C_CITY          LowCardinality(String),
        C_NATION        LowCardinality(String),
        C_REGION        LowCardinality(String),
        C_PHONE         String,
        C_MKTSEGMENT    LowCardinality(String)
)
ENGINE = MergeTree ORDER BY (C_CUSTKEY);

CREATE TABLE lineorder
(
    LO_ORDERKEY             UInt32,
    LO_LINENUMBER           UInt8,
    LO_CUSTKEY              UInt32,
    LO_PARTKEY              UInt32,
    LO_SUPPKEY              UInt32,
    LO_ORDERDATE            Date,
    LO_ORDERPRIORITY        LowCardinality(String),
    LO_SHIPPRIORITY         UInt8,
    LO_QUANTITY             UInt8,
    LO_EXTENDEDPRICE        UInt32,
    LO_ORDTOTALPRICE        UInt32,
    LO_DISCOUNT             UInt8,
    LO_REVENUE              UInt32,
    LO_SUPPLYCOST           UInt32,
    LO_TAX                  UInt8,
    LO_COMMITDATE           Date,
    LO_SHIPMODE             LowCardinality(String)
)
ENGINE = MergeTree PARTITION BY toYear(LO_ORDERDATE) ORDER BY (LO_ORDERDATE, LO_ORDERKEY);

CREATE TABLE part
(
        P_PARTKEY       UInt32,
        P_NAME          String,
        P_MFGR          LowCardinality(String),
        P_CATEGORY      LowCardinality(String),
        P_BRAND         LowCardinality(String),
        P_COLOR         LowCardinality(String),
        P_TYPE          LowCardinality(String),
        P_SIZE          UInt8,
        P_CONTAINER     LowCardinality(String)
)
ENGINE = MergeTree ORDER BY P_PARTKEY;

CREATE TABLE supplier
(
        S_SUPPKEY       UInt32,
        S_NAME          String,
        S_ADDRESS       String,
        S_CITY          LowCardinality(String),
        S_NATION        LowCardinality(String),
        S_REGION        LowCardinality(String),
        S_PHONE         String
)
ENGINE = MergeTree ORDER BY S_SUPPKEY;

1.3 导入数据

$ clickhouse-client --query "INSERT INTO db_bench.customer FORMAT CSV" < customer.tbl
$ clickhouse-client --query "INSERT INTO db_bench.part FORMAT CSV" < part.tbl
$ clickhouse-client --query "INSERT INTO db_bench.supplier FORMAT CSV" < supplier.tbl
$ clickhouse-client --query "INSERT INTO db_bench.lineorder FORMAT CSV" < lineorder.tbl

1.4 join表

这个操作耗时两个小时,占用内存为29G

# 因为这个操作比较耗费内存,所以要事先设置好内存限制
SET<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值