CATALOG
- Steady Problem without Heat Source
- Critical Thickness(临界厚度)
- Steady Problem with Heat Source
Steady Problem without Heat Source
Conduction through a spherical wall (shell)

The governing condition is
1 r 2 ∂ ∂ r ( λ r 2 ∂ T ∂ r ) = 0 \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(\lambda r^{2} \frac{\partial T}{\partial r}\right)=0 r21∂r∂(λr2∂r∂T)=0
and the BC is
r = r 1 T = T 1 r = r 2 T = T 2 \begin{aligned} &r=r_{1} \quad T=T_{1}\\ &r=r_{2} \quad T=T_{2} \end{aligned} r=r1T=T1r=r2T=T2
from the g function, we have
∂ ∂ r ( λ r 2 ∂ T ∂ r ) = 0 \frac{\partial}{\partial r}\left(\lambda r^{2} \frac{\partial T}{\partial r}\right)=0 ∂r∂(λr2∂r∂T)=0
⇒ λ r 2 ∂ T ∂ r = C 1 ⇒ ∂ T ∂ r = C 1 λ r 2 T = − C 1 λ r + C 2 \begin{aligned} \Rightarrow \lambda r^{2} \frac{\partial T}{\partial r}=C_{1} \Rightarrow \frac{\partial T}{\partial r} &=\frac{C_{1}}{\lambda r^{2}} \\ T =-\frac{C_{1}}{\lambda r}+C_{2} \end{aligned} ⇒λr2∂r∂T=C1⇒∂r∂TT=−λrC1+C2=λr2C1
so we have
T 1 = − c 1 λ r 1 + c 2 T 2 = − c 1 N 2 + c 2 \begin{array}{l} T_{1}=-\frac{c_{1}}{\lambda r_{1}}+c_{2} \\ T_{2}=-\frac{c_{1}}{N_{2}}+c_{2} \end{array} T1=−λr1c1+c2T2=−N2c1+c2
and
C 1 = − T 1 − T 2 1 1 r − 1 r 2 r C 2 = T 1 − T 1 − T 2 1 r 1 − 1 r 2 ⋅ 1 λ r 1 = T 2 − T 1 − T 2 1 r 1 − 1 r 2 ⋅ 1 λ r 2 \begin{aligned} \quad C_{1} &=-\frac{T_{1}-T_{2}}{\frac{1}{\frac{1}{r}-\frac{1}{r_{2}}}} r \\ C_{2} &=T_{1}-\frac{T_{1}-T_{2}}{\frac{1}{r_{1}}-\frac{1}{r_{2}}} \cdot \frac{1}{\lambda r_{1}} \\ &=T_{2}-\frac{T_{1}-T_{2}}{\frac{1}{r_{1}}-\frac{1}{r_{2}}} \cdot \frac{1}{\lambda r_{2}} \end{aligned} C1C2=−r1−r211T1−T2r=T1−r11−r21T1−T2⋅λr11=T2−r11−r21T1−T2⋅λr21
so we have the function
T = T 2 + ( T 1 − T 2 ) 1 / r − 1 / r 2 1 / r 1 − 1 / r 2 T=T_{2}+\left(T_{1}-T_{2}\right) \frac{1 / r-1 / r_{2}}{1 / r_{1}-1 / r_{2}} T=T2+(T1−T2)1/r1−1/r21/r−1/r2
so we have the Heat flution
q = − λ d T d r = λ r 2 T 1 − T 2 1 / r 1 − 1 / r 2 q=-\lambda \frac{d T}{d r}=\frac{\lambda}{r^{2}} \frac{T_{1}-T_{2}}{1 / r_{1}-1 / r_{2}} q=−λdrdT=r2λ1/r1−1/r2T1−T2
the Heat transfer rate is
Φ = q A = 4 π r 2 λ r 2 T 1 − T 2 1 / r 1 − 1 / r 2 = 4 π λ T 1 − T 2 1 / r 1 − 1 / r 2 \Phi=q A=4 \pi r^{2} \frac{\lambda}{r^{2}} \frac{T_{1}-T_{2}}{1 / r_{1}-1 / r_{2}}=4 \pi \lambda \frac{T_{1}-T_{2}}{1 / r_{1}-1 / r_{2}} Φ=qA=4πr2r2λ1/r1−1/r2T1−T2=4πλ1/r1−1/r2T1−T2
and the Transfer rate
R = T 1 − T 2 Φ = 1 4 π λ ( 1 r 1 − 1 r 2 ) R=\frac{T_{1}-T_{2}}{\Phi}=\frac{1}{4 \pi \lambda}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) R=ΦT1−T2=4πλ1(r11−r21)
Conduction through a composite(复合的) spherical(球形) wall (shell)

Thermal resistance:
R t = R 1 + R 2 + R 3 = 1 4 π λ 1 ( 1 r 1 − 1 r 2 ) + 1 4 π λ 2 ( 1 r 2 − 1 r 3 ) + 1 4 π λ 3 ( 1 r 3 − 1 r 4 ) R_{t}=R_{1}+R_{2}+R_{3}=\frac{1}{4 \pi \lambda_{1}}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)+\frac{1}{4 \pi \lambda_{2}}\left(\frac{1}{r_{2}}-\frac{1}{r_{3}}\right)+\frac{1}{4 \pi \lambda_{3}}\left(\frac{1}{r_{3}}-\frac{1}{r_{4}}\right) Rt=R1+R2+R3=4πλ11(r11−

最低0.47元/天 解锁文章
5909

被折叠的 条评论
为什么被折叠?



