论文提出从IoU指标延伸来的PIoU损失函数,能够有效地提高倾斜目标检测场景下的旋转角度预测和IoU效果,对anchor-based方法和anchor-free方法均适用。另外论文提供了Retail50K数据集,能够很好地用于评估倾斜目标检测算法的性能
来源:晓飞的算法工程笔记 公众号
论文: PIoU Loss: Towards Accurate Oriented Object Detection in Complex Environments

Introduction
当前的目标检测方法由于BB(bounding boxes)的特性,对倾斜和密集物体的检测存在一定的局限性。为了解决这个问题,研究者扩展出了带旋转参数的OBB(oriented bounding boxes),即从BB( c x , c y , w , h c_x,c_y,w,h cx,cy,w,h)扩展为OBB( c x , c y , w , h , θ c_x,c_y,w,h,\theta cx,cy,w,h,θ),其中 θ \theta θ旋转角度,这样OBB就能更紧凑地包围目标,可以更好地检测旋转和密集的物体。

目前的OBB-based方法大多数在anchor-based架构上采用距离损失来优化上述的5个参数,并且在航空图片的目标检测上已经有一些应用。但其检测性能在更复杂的场景中依然存在局限性,主要原因在于距离损失更多地是优化旋转角度误差,而不是优化全局IoU,特别是对长条形物体很不敏感。如图a所示,两个IoU相差很大的情景下,距离损失的结果却是一样的。

为了解决这个问题,论文提出PIoU(Pixels-IOU)损失来同时提高旋转角度和IoU的准确率。如图b所示,PIoU损失能直接反映物体间的IoU,但由于OBB间的相交区域可能是多边形,OBB的IoU比BB的IoU要难算得多,所以PIoU损失以逐像素判断的方式进行IoU计算并且是连续可微的。另外论文还提供了包含高长宽比倾斜目标的检测数据集Retail50K,方便OBB-based检测算法的研究。
论文的贡献如下:
- 提出新的损失函数PIoU损失,能够提升倾斜目标的检测效果。
- 提供新的数据集Retail50K,可以更好的进行OBB-based算法的评估。
- 通过实验证明PIoU损失的有效性,能够运用于anchor-based和anchor-free方法。
Pixels-IoU (PIoU) Loss
对于OBB b b b( c x , c y , w , h , θ c_x, c_y, w,h,\theta cx,c

提出一种名为PIoU的损失函数,它从IoU指标延伸而来,旨在提高倾斜目标检测中旋转角度预测和IoU的准确性。PIoU适用于anchor-based和anchor-free方法,尤其在复杂环境下检测长条形物体时表现出色。同时,论文还提供了Retail50K数据集,用于评估算法性能。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



