Q:To give integer solutions of a2+b2=c2a^2+b^2=c^2a2+b2=c2
solution:
We get :(ac)2+(bc)2=1(\frac{a}{c})^2+(\frac{b}{c})^2=1(ca)2+(cb)2=1
let: ac=x\frac{a}{c}=xca=x bc=y\frac{b}{c}=ycb=y
then: just to find Rational number soluntion of x2+y2=1x^2+y^2=1x2+y2=1
Here we can fit it in a standard circle:
Then to solve: {x2+y2=1y=k(x−1)\begin{cases} x^2+y^2=1 \\ y=k(x-1) \end{cases}{x2+y2=1y=k(x−1)
At last we could solve the result rational number solutions

2235

被折叠的 条评论
为什么被折叠?



