hdu 1545 01-K Code

01-K Code

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 406    Accepted Submission(s): 96


Problem Description
Consider a code string S of N symbols, each symbol can only be 0 or 1. In any consecutive substring of S, the number of 0's differs from the number of 1's by at most K. How many such valid code strings S are there? 

For example, when N is 4, and K is 3, there are two invalid codes: 0000 and 1111. 
 

Input
The input consists of several test cases. For each case, there are two positive integers N and K in a line.

N is in the range of [1, 62].

K is in the range of [2, 5].
 

Output
Output the number of valid code strings in a line for each case.
 

Sample Input
1 2 4 3
 

Sample Output
2 14
 


分析:dp[i][j][k] 表示遍历到第i位(从1开始),当前0-1的最小值为j,0-1的最大值为k,可知j的最大值为0,k的最小值为0;
            dp[0][0][0]表示空串
转移方程:dp[i+1][min(j+1,0)][k+1]+=dp[i][j][k];//第i+1位添0
                    dp[i+1][j-1][max(k-1,0)]+=dp[i][j][k];//第i+1位添1
由于j可能为负数,故加一个偏移值5
#include<cstdio>
#include<cstring>
#define ll __int64
const int W=5;
int n,k;
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
ll dp[63][10][10];
int main(){
	int i,j,p;
	while(~scanf("%d%d",&n,&k)){
		memset(dp,0,sizeof(dp));
		dp[0][W][W]=1;
		for(i=0;i<n;i++){
			for(j=-k+W;j<=W;j++)for(p=W;p<=k+W;p++){
				dp[i+1][min(j+1,W)][p+1]+=dp[i][j][p];
				dp[i+1][j-1][max(p-1,W)]+=dp[i][j][p];
			}
		}
		ll ans=0;
		for(i=-k+W;i<=W;i++)for(j=W;j<=k+W;j++)ans+=dp[n][i][j];
		printf("%I64d\n",ans);
	}
	return 0;
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值