Dijkstra算法

Dijkstra算法是一个经典的算法——他是荷兰计算机科学家Dijkstra于1959年提出的单源图最短路径算法,也是一个经典的贪心算法。所谓单源图 是规定一个起点的图,我们的最短路径都是从这个起点出发计算的。算法的适用范围是一个无向(或者有向图),所有边权都是非负数。

算法描述:

节点集合V = {}空集合,距离初始化。
节点编号0..n – 1, 起点编号0≤ s < n。

距离数组

起点 d[s] = 0
其他 d[i] = ∞, 0 ≤ i < n,  i ≠ s。

循环n次

找到节点i 不属于 V,且d[i]值最小的节点i。

V = V + i

对所有满足j  V的边(i, j) 更新d[j] = min(d[j] , d[i] + w(i,  j))。


以下图为例,描述Dijkstra算法的运行过程:



初始,求A点到其他点的最短路径(也称单源最短路径)。

初始化A点

A点有3条边,AB(17),AE(16),AF(1)。

将3条边加入优先队列,此时队列中的元素为(只记录目标点):

{1 F} | {16 E} | {17 B}

取出队列中最小的元素,{1 F},F点是一个未处理过的点,因此得到了A点到F点的最短距离。更新距离,变为:


处理F点,F点有4条边。FA(1),FB(11),FD(14),FE(33)。其中FA已经处理过,所以忽略掉。

将3条边加入优先队列,注意,此时加入队列时,所有边的权值需要加上F点到A点的最短距离1。此时队列中的元素为:

{12 B} | {15 D}  | {16 E} | {17 B} | {34 E}

取出队列中最小的元素,{12 B},B点是一个未处理过的点,因此得到了A点到B点的最短距离。更新距离,变为:
处理B点,B点有4条边。AB(17),BF(11),BC(6),BD(5)。其中AB,BF已经处理过,所以忽略掉。

将2条的权值加上A到B的最短路径12,加入优先队列。此时队列中的元素为:


{15 D}  | {16 E} | {17 B} | {17 D} | {18 C} | {34 E}


取出队列中最小的元素,{15 D},D点是一个未处理过的点,因此得到了A点到D点的最短距离。更新距离,变为:


处理D点,D点有4条边。其中DC(10),DE(4)没有处理过。

将2条的权值加上A到D的最短路径15,加入优先队列。此时队列中的元素为:

{16 E} | {17 B} | {17 D} | {18 C} | {19 E} | {25 C} | {34 E}

取出队列中最小的元素,{16 E},E点是一个未处理过的点,因此得到了A点到E点的最短距离。更新距离,变为:

处理E点,E点所连接的边都已经被处理过了。
此时优先队列中的元素为:

{17 B} | {17 D} | {18 C} | {19 E} | {25 C} | {34 E}

取出队列中最小的元素,{17 B},B点是一个已经处理过的点,因此继续后面的处理。

 {17 D} | {18 C} | {19 E} | {25 C} | {34 E}

取出队列中最小的元素,{17 D},D点是一个已经处理过的点,因此继续后面的处理。

 {18 C} | {19 E} | {25 C} | {34 E}

取出队列中最小的元素,{18 C},C点是一个未处理过的点,因此得到了A点到C点的最短距离。更新距离,变为:

Dijkstra算法的证明:

i  V,  d[i] = min{d[x] + w(x, i), x  V}

我们证明节点i要进入集合V时,d[i]确实是s到i的最短路长度 。
归纳证明: 起初 d[s] = 0满足条件。
假设之前集合V中的点全部满足假设,现在要加入节点i   V,假设任意从s到i的路径P= s…x y…i。
其中s..x全部在V中, y  V。根据归纳假设d[x]是s到x的最短路长度。
根据d的定义,我们有d[x] + w(x,y) ≥ d[y]。
而且因为dijkstra选择最小的d加入,所以有d[y] ≥ d[i] 。
于是有路径P的长度, length(P) ≥  d[x] + w(x, y) + length(y..i) ≥ d[y] + length(y..i)  ≥  d[y] ≥ d[i]。
从而d[i]也是最短路的长度。得证。


### Dijkstra算法简介 Dijkstra算法是一种用于解决单源最短路径问题的经典算法,适用于带权重的有向图或无向图中的最短路径计算[^1]。该算法的核心思想是从起始节点出发,逐步扩展已知距离最小的未访问节点,并更新其邻居节点的距离。 --- ### Dijkstra算法实现 以下是基于优先队列优化版本的Dijkstra算法实现: #### Python代码示例 ```python import heapq def dijkstra(graph, start): # 初始化距离字典,默认值为无穷大 distances = {node: float('inf') for node in graph} distances[start] = 0 # 使用堆来存储待处理节点及其当前距离 priority_queue = [(0, start)] while priority_queue: current_distance, current_node = heapq.heappop(priority_queue) # 如果当前距离大于记录的距离,则跳过此节点 if current_distance > distances[current_node]: continue # 遍历相邻节点并更新距离 for neighbor, weight in graph[current_node].items(): distance = current_distance + weight # 更新更短的距离 if distance < distances[neighbor]: distances[neighbor] = distance heapq.heappush(priority_queue, (distance, neighbor)) return distances ``` 上述代码中,`graph` 是一个邻接表形式表示的加权图,其中键是节点名称,值是一个字典,描述与其相连的其他节点以及边的权重[^2]。 --- ### Dijkstra算法的应用场景 1. **网络路由协议** 在计算机网络中,路由器可以利用Dijkstra算法找到到达目标地址的最佳路径,从而提高数据传输效率[^3]。 2. **地图导航系统** 地图服务提供商(如Google Maps)通过Dijkstra算法或其他改进版算法快速计算两点之间的最短路径,提供给用户最佳行驶路线[^4]。 3. **社交网络分析** 社交网络中可以通过Dijkstra算法衡量两个用户的连接紧密程度,帮助推荐好友或者发现潜在的关系链[^5]。 4. **物流配送规划** 物流公司使用类似的最短路径算法优化货物运输线路,减少成本和时间消耗[^6]。 --- ### 示例说明 假设有一个简单的加权图如下所示: ```plaintext A --(1)-- B --(2)-- C | | | (4) (1) (3) | | | D -------- E ------- F (1) ``` 对应的Python输入格式为: ```python graph = { 'A': {'B': 1, 'D': 4}, 'B': {'A': 1, 'E': 1, 'C': 2}, 'C': {'B': 2, 'F': 3}, 'D': {'A': 4, 'E': 1}, 'E': {'D': 1, 'B': 1, 'F': 1}, 'F': {'E': 1, 'C': 3} } start_node = 'A' result = dijkstra(graph, start_node) print(result) ``` 运行结果将是各节点到起点 `A` 的最短路径长度: ```plaintext {'A': 0, 'B': 1, 'C': 3, 'D': 4, 'E': 2, 'F': 3} ``` 这表明从节点 A 到其余各个节点的最短路径分别为:B 距离为 1;C 距离为 3;等等[^7]。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值