一个简单的例子
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 1 input image channel, 6 output channels, 5x5 square convolution
# kernel
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# If the size is a square you can only specify a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features
net = Net()
print(net)
通过例子我们能够看到:
1、构造函数里定义了很多的操作,conv1.2是用来进行卷积操作,fc变量定义了一些列线性函数操作,这些都是未来神经网络中各个神经元的f(x)
2、forward函数,是从nn.Module类中继承过来,并重写的函数,用于神经网络的前向传播
3、forward函数中池化降维等操作是我们后续在研究的操作
4、num_flat_features函数,用于将tensor变成为一维特征向量,以后再具体研究原理
5、关于每一层的神经中神经元的参数和链接方式的设置,应该是module类中默认的w设置方式和默认的神经元链接方式