数据结构和算法学习记录——认识二叉搜索树及二叉搜索树的查找操作(递归以及迭代实现-查找操作、查找最大和最小元素)

本文介绍了二叉搜索树(BST)的基本概念和性质,包括查找、查找最大和最小元素的操作。分别展示了递归和迭代两种方法实现查找功能,强调了在最坏情况下查找效率与树的形态有关。同时,提供了查找最小元素的递归函数和最大元素的迭代函数的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

二叉搜索树

二叉搜索树的一些操作函数 

二叉搜索树的查找操作Find

递归实现

迭代实现 

查找最大和最小元素

查找最小元素的递归函数

查找最大元素的迭代函数 


二叉搜索树

二叉搜索树(BST,Binary Search Tree),也称二叉排序树或二叉查找树。

一颗二叉树,可以为空;如果不为空,满足一下性质:

1.非空左子树的所有键值小于其根节点的键值。

2.非空右子树的所有键值大于其根节点的键值。

3.左、右子树都是二叉搜索树。

 

二叉搜索树的一些操作函数 

  • Position Find (ElementType x,BinTree BST);

从二叉搜索树BST中查找元素x,返回其所在节点的地址。

  • Position FindMin(BinTree BST);

从二叉搜索树BST中查找并返回最小元素所在节点的地址。

  • Position FindMax(BinTree BST);

从二叉搜索树BST中查找并返回最大元素所在节点的地址。

  • BinTree Insert(ElementType x,BinTree BST);

在二叉搜索树BST中插入一个值为x的节点。

  • BinTree Delete(ElementType x,BinTree BST);

在二叉搜索树BST中删除值为x的节点。

二叉搜索树的查找操作Find

二叉搜索树的查找思路很简单:

查找从根节点开始,如果树为空,返回NULL;

若搜索树非空,则根节点关键字和x进行比较,并进行不同处理:

  1. 若x小于根节点键值,只需在左子树中继续搜索;
  2. 若x大于根节点键值,则在右子树中进行继续搜索;
  3. 如果两者比较的结果是相等,搜索完成,返回指向此节点的指针。

递归实现

使用递归的方法实现的话,代码很简单,直接判断键值大小,进行尾递归。(即在程序要返回值时进行递归)

Position Find(ElementType x,BinTree BST)
{
	if (!BST)
	{
		return NULL;  //为空则查找失败
	}
	if (x > BST->data)
	{
		return Find(x, BST->Right);  //在右子树中继续查找
	}
	else if (x < BST->data)
	{
		return Find(x, BST->Left);   //在左子树中继续查找
	}
	else   //x == BST->data
	{
		return BST;                  //查找成功,返回结点地址
	}
}

但递归实现的方法效率不是很高,从编译的角度来看,尾递归可以用循环的方式来实现了。

所以我们将递归函数改为迭代函数

迭代实现 

 与递归函数同样的一步是,先判断节点是否为空,为空表示查找失败,非空则开始查找;

如果x的值大于根节点,就将节点的指针指向右子树继续循环查找;

如果x的值小于根节点,则将节点的指针指向左子树继续循环查找;

如果相等,则说明查找成功了。

Position IterFind(ElementType x, BinTree BST)
{
	while (BST)
	{
		if (x > BST->data)
		{
			BST = BST->Right;    //向右子树中移动,继续查找
		}
		else if (x < BST->data)
		{
			BST = BST->Left;     //向左子树中移动,继续查找
		}
		else
		{
			return BST;          //查找成功,返回结点地址
		}
	}
	return NULL;                 //查找失败
}

但是这个查找的效率决定于树的高度。

如果二叉搜索树排成了一条链,即斜二叉树,他的这颗树的高度就为n-1,这样最坏的情况下要找到一个节点就需要n-1次了。算法的时间效率就只有O(N)了,而达不到我们想要的log2n,要解决这个问题就要涉及到以后要讲的平衡二叉树了。

查找最大和最小元素

因为二叉搜索树的特殊性,比根节点小的在左子树,比根节点大的在右子树。

所以,

最大元素一定是在树的最右分枝的端节点上; 最小元素一定是在树的最左分枝的端节点上。

 

函数的代码实现也没什么难点,按照思路,在递归的方法实现中(查找最小元素):节点的左子树不为空就进行递归,直到某一个节点的左子树为空就返回。

查找最小元素的递归函数

Position FindMin(BinTree BST)
{
	if (!BST)
	{
		return NULL;                  //空的二叉搜索树,返回NULL
	}
	else if (!BST->Left)
	{
		return BST;                   //找到最左的叶节点并返回
	}
	else
	{
		return FindMin(BST->Left);    //沿左分支继续查找
	}
}

在迭代的方法实现中:直接走到最左端或者最右端的节点即是最小元素或者最大元素。

查找最大元素的迭代函数 

Position FindMax(BinTree BST)
{
	if (BST)
	{
		while (BST->Right)
		{
			BST = BST->Right;  //沿右分支一直查找,直到最右叶节点
		}
	}
	return BST;
}

end


学习自:MOOC数据结构——陈越、何钦铭

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值