线性代数——(期末突击)行列式(上)-行列式计算、行列式的性质

目录

行列式

行列式计算

逆序数 

行列式的性质

转置

两行(列)互换

两行(列)对应相等

提公因子

两行(列)对应成比例

某行(列)为零

行列式分裂

行列式变换及三角行列式


行列式

行列式计算

  • 行列式:A_{ij}(i是行标,j是列标) 
  • 计算方法(以二阶行列式为例):主对角线(ad)减去次对角线(bc)

\begin{vmatrix} a &b \\ c &d \end{vmatrix}=ad-bc

  • 三阶行列式同理

\begin{vmatrix} 1 &2 &3 \\ 4 &5 &6 \\ 7 &8 &9 \end{vmatrix} 

\left [(1\times 5\times9)+(2\times6\times7)+(3\times4\times8) \right ]\: \: \: -\left [ (3\times5\times7)+(2\times4\times9)+(1\times6\times8) \right ]

逆序数 

  • 逆序数:本质就是数一下大的数排在小的数前面的个数

例如,4213的逆序数为3+1=4。简单解释一下:4213原本的顺序应为1234,对于‘4’而言,‘2’、‘1’、‘3’都应该排在它的前面,所以此处记逆序数为3;对于‘2’而言,‘1’应该排在它的前面,而‘3’排在它之后 是合理的,所以此处只有一个逆序数;最后看‘1’,其后面的‘3’排在后面显然也是合理的,故而4213的逆序数为4.

换个例子,大家可以自行理一遍:5712的逆序数为4.

行列式的性质

转置

即行列互换。

D=\begin{vmatrix} 1 &2 &3 \\ 1& 1 &1 \\ 8&8 &8 \end{vmatrix}         

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值