Matlab的logo是怎么来的? L形区域上的波动方程的解

MATLAB的L形膜Logo实际上是一个波动方程的特征函数。文章介绍了如何利用Mathematica计算此类问题,探讨了L形区域因非凸角产生的奇异性以及有限差分方法的局限性。通过圆弧部分的分数阶贝塞尔函数和三角函数,可以更高效准确地解决这类问题,并展示了使用经典有限差分方法在MATLAB中计算L形膜的12个特征值的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


下面是mathworks的头儿Cleve Moler写的文章

"L形区域上波动方程的特征函数"

不过, 我打算稍后用Mathematica新增加的功能来计算这个结果, 我看到这里提到mathematica的文档中已经添加了解决类似问题的例子.

注意到这还只是线性的偏微分方程,如果问题复杂一些,可能要手动完成很多转换工作,才能实现求解.

Wolfram你要加油,努力吧

We hope you’ve seen it many times. It’s on the covers of our books. It’s on our business cards and stationery. It’s even on a “sponsor a highway” sign on Route 9 in Natick,Massachusetts. But, do you really know what the logo is?

I’m talking about the L-shaped membrane.We’ve used various pictures of it ever since The MathWorks was founded almost twenty years ago, but it only recently became the official company logo. I’d like to tell you about its mathematical background.

The wave equation is a fundamental model in mathematical physics that describes how a disturbance travels through matter. If t is time and x and y are spatial coordinates with the units chosen so that the wave propagation speed is equal to one, then the amplitude of a wave satisfies the partial differential equation

cc_logo_eq1_w.gif

Periodic time behavior gives solutions of the form

cc_logo_eq2_w.gif

The quantities λ are the eigenvalues and the corresponding functions v(x,y) are the eigenfunctions or modes of vibration. They are determined by the physical properties, the geometry, and the boundary conditions of each particular situation. Any solution to the wave equation can be expressed as a linear combination of these eigenfuncti

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值