In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.
Input
Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 10 7 on each line.
Output
The output contains the number of digits in the factorial of the integers appearing in the input.
Sample Input
2 10 20
Sample Output
7 19
思路:
n的位数 = (int)log10(n)+1。
那n!的位数就是(int)log10(1)+(int)log10(2)+(int)log10(3)+...+(int)log10(n)+1。
本文介绍了一种利用斯特林公式计算大整数阶乘位数的方法,适用于安全数据传输、加密等应用场景中对大整数的需求。通过解析输入的整数,输出其阶乘的位数,为信息安全领域的算法实现提供了有效的数学工具。
435

被折叠的 条评论
为什么被折叠?



