【哈希-简单】771. 宝石与石头

这篇博客介绍了如何在Python中高效地计算字符串S中属于指定集合J的宝石数量。提供了四种不同的实现方法,包括使用数据结构dict、朴素遍历、一行代码以及利用set。这些方法在时间和空间效率上有所不同,适用于不同场景。

【题目】
给定字符串J 代表石头中宝石的类型,和字符串 S代表你拥有的石头。 S 中每个字符代表了一种你拥有的石头的类型,你想知道你拥有的石头中有多少是宝石。
J 中的字母不重复,J 和 S中的所有字符都是字母。字母区分大小写,因此"a"和"A"是不同类型的石头。
【示例 1】
输入: J = “aA”, S = “aAAbbbb”
输出: 3
【示例 2】
输入: J = “z”, S = “ZZ”
输出: 0
【注意】
S 和 J 最多含有50个字母。
J 中的字符不重复。
【代码】
【Python】
【方法1:使用数据结构dict】

class Solution:
    def numJewelsInStones(self, jewels: str, stones: str) -> int:
        cnt=dict(Counter(stones))
        c=0
        for key in cnt:
            if key in jewels:
                c+=cnt[key]
        return c

【方法2:最质朴的方式】遍历stones字符串,挨个字符判断是否存在于jewels中

class Solution:
    def numJewelsInStones(self, jewels: str, stones: str) -> int:
        c=0
        for s in stones:
            if s in jewels:
                c+=1
        return c

【方法3:一行代码】

class Solution:
    def numJewelsInStones(self, jewels: str, stones: str) -> int:
        return sum(s in jewels for s in stones)

【方法4:使用数据结构set】
执行用时:
32 ms, 在所有 Python3 提交中击败了95.04%的用户
内存消耗:
14.8 MB, 在所有 Python3 提交中击败了50.38%的用户

class Solution:
    def numJewelsInStones(self, jewels: str, stones: str) -> int:
        jewelsSet = set(jewels)
        return sum(s in jewelsSet for s in stones)
内容概要:本文围绕EKF SLAM(扩展卡尔曼滤波同步定位地图构建)的性能展开多项对比实验研究,重点分析在稀疏稠密landmark环境下、预测更新步骤同时进行非同时进行的情况下的系统性能差异,并进一步探讨EKF SLAM在有色噪声干扰下的鲁棒性表现。实验考虑了不确定性因素的影响,旨在评估不同条件下算法的定位精度地图构建质量,为实际应用中EKF SLAM的优化提供依据。文档还提及多智能体系统在遭受DoS攻击下的弹性控制研究,但核心内容聚焦于SLAM算法的性能测试分析。; 适合人群:具备一定机器人学、状态估计或自动驾驶基础知识的科研人员及工程技术人员,尤其是从事SLAM算法研究或应用开发的硕士、博士研究生和相关领域研发人员。; 使用场景及目标:①用于比较EKF SLAM在不同landmark密度下的性能表现;②分析预测更新机制同步否对滤波器稳定性精度的影响;③评估系统在有色噪声等非理想观测条件下的适应能力,提升实际部署中的可靠性。; 阅读建议:建议结合MATLAB仿真代码进行实验复现,重点关注状态协方差传播、观测更新频率噪声模型设置等关键环节,深入理解EKF SLAM在复杂环境下的行为特性。稀疏 landmark 稠密 landmark 下 EKF SLAM 性能对比实验,预测更新同时进行非同时进行对比 EKF SLAM 性能对比实验,EKF SLAM 在有色噪声下性能实验
内容概要:本文围绕“基于主从博弈的售电商多元零售套餐设计多级市场购电策略”展开,结合Matlab代码实现,提出了一种适用于电力市场化环境下的售电商优化决策模型。该模型采用主从博弈(Stackelberg Game)理论构建售电商用户之间的互动关系,售电商作为领导者制定电价套餐策略,用户作为跟随者响应电价并调整用电行为。同时,模型综合考虑售电商在多级电力市场(如日前市场、实时市场)中的【顶级EI复现】基于主从博弈的售电商多元零售套餐设计多级市场购电策略(Matlab代码实现)购电组合优化,兼顾成本最小化收益最大化,并引入不确定性因素(如负荷波动、可再生能源出力变化)进行鲁棒或随机优化处理。文中提供了完整的Matlab仿真代码,涵盖博弈建模、优化求解(可能结合YALMIP+CPLEX/Gurobi等工具)、结果可视化等环节,具有较强的可复现性和工程应用价值。; 适合人群:具备一定电力系统基础知识、博弈论初步认知和Matlab编程能力的研究生、科研人员及电力市场从业人员,尤其适合从事电力市场运营、需求响应、售电策略研究的相关人员。; 使用场景及目标:① 掌握主从博弈在电力市场中的建模方法;② 学习售电商如何设计差异化零售套餐以引导用户用电行为;③ 实现多级市场购电成本风险的协同优化;④ 借助Matlab代码快速复现顶级EI期刊论文成果,支撑科研项目或实际系统开发。; 阅读建议:建议读者结合提供的网盘资源下载完整代码案例数据,按照文档目录顺序逐步学习,重点关注博弈模型的数学表达Matlab实现逻辑,同时尝试对目标函数或约束条件进行扩展改进,以深化理解并提升科研创新能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值