北京时间8月1日凌晨(当地时间7月31日下午),Google发布了其Gemma系列开源语言模型的更新,在AI领域引发了巨大的震动。Google Developer的官方博客宣布,与6月发布的27B和9B参数版本相比,新的2B参数模型在保持卓越性能的同时,实现了“更小、更安全、更透明”的三大突破。
Gemma系列语言模型正在引领着一场“小”的技术革命
Gemma 2 2B 简介
Gemma 2 2B版本,通过蒸馏学习技术得到的”小“模型,不仅优化了NVIDIA TensorRT-LLM库,更在边缘设备到云端的多种硬件上展现出优秀的运行能力。更重要的是,较小的参数量大大降低了研究和开发的门槛,使得Gemma 2 2B能够在Google Colab的免费T4 GPU服务上流畅运行,为用户带来了灵活且成本效益高的解决方案。
Gemma 2 不仅有了更轻量级「Gemma 2 2B」版本,还构建一个安全内容分类器模型「ShieldGemma」和一个模型可解释性工具「Gemma Scope」。具体如下:
- Gemma 2 2B 具有内置安全改进功能,实现了性能与效率的强大平衡;
- ShieldGemma 基于 Gemma 2 构建,用于过滤 AI 模型的输入和输出,确保用户安全;
- Gemma Scope 提供对模型内部工作原理的无与伦比的洞察力。
Google 推出了 Gemma 系列模型,模型设计更为高效和用户友好。Gemma 模型可以轻松运行在各种日常设备上,如智能手机、平板电脑和笔记本电脑,无需特殊硬件或复杂优化。
Gemma 2 2B版本的特点
- 技术: 通过蒸馏学习技术优化
- 性能: 优化了NVIDIA TensorRT-LLM库,在同等规模下提供同类最佳性能,超越同类其他开源模型;
- 部署灵活且经济高效:可在各种硬件上高效运行,从边缘设备和笔记本电脑到使用云部署如 Vertex AI 和 Google Kubernetes Engine (GKE) 。为了进一步提高速度,该模型使用了 NVIDIA TensorRT-LLM 库进行优化,并可作为 NVIDIA NIM 使用。此外,Gemma 2 2B 可与 Keras、JAX、Hugging Face、NVIDIA NeMo、Ollama、Gemma.cpp 以及即将推出的 MediaPipe 无缝集成,以简化开发;
- 开源且易于访问:可用于研究和商业应用,由于它足够小,甚至可以在 Google Colab 的 T4 GPU 免费层上运行,使实验和开发比以往更加简单。
业界反响与开源趋势
在Gemma 2 2B发布后,业界反响热烈。GAIR硅谷自动驾驶峰会(2018)嘉宾、UC Berkeley教授Anca Dragan (推特:@ancadianadragan )第一时间发表多条推文对Gemma 2的SAE机制进行了解读。她表示,如此大的计算资源使得纯粹的学术研究机构难以参与其中