Linux I2C framework(1)_概述

本文介绍了 Linux I2C framework 的整体架构,包括 I2C 总线拓扑、软件框架及 API 汇总等内容。I2C 是一种用于 CPU 和外设间低速数据通信的协议,Linux kernel 通过 I2C framework 抽象和管理相关资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载地址:http://www.wowotech.net/comm/i2c_overview.html
1. 前言

I2C协议是嵌入式系统中广泛使用的一类通信协议,主要用于CPU和各种外设之间的低速数据通信。Linux kernel使用I2C framework抽象、管理相应的资源,并以各种形式,向各类使用者提供API。另外,作为总线(bus)的一种,I2C framework的实现体现了linux设备模型的精髓,值得研究与学习。这就是攥写“Linux I2C framework”系列文章的缘由和目的。

按照分析各类framework的老规矩,蜗蜗会从4个角度分4篇文章介绍I2C framework:

1)Linux I2C framework的整体介绍,包括基础知识、软件框架、API汇整等。就是本文。

2)从Provider的角度,介绍怎么借助I2C framework管理I2C相关的SOC资源。换句话说,就是怎么编写一个I2C driver。具体可参考“Linux I2C framework(2)_I2C provider”。

3)从Consumer的角度,介绍I2C framework为使用者提供了哪些功能、哪些API,以及怎样利用I2C framework编写程序。具体可参考“Linux I2C framework(3)_I2C consumer”。

4)从内部实现的角度,分析I2C framework的实现逻辑。具体可参考“Linux I2C framework(4)_I2C core”。

2. I2C的总线拓扑

I2C是总线的一种,其硬件拓扑如下图所示:I2C_hw_topology

图片1 I2C H/W topology

关于I2C的硬件拓扑,相信驱动工程师都很熟悉,这里就不过多描述了,但有一点要强调:

我们都知道,I2C协议是主从式的,包括master(主设备)和slave(从设备),而Linux kernel的I2C framework只抽象了I2C master有关的功能,换句话说,linux kernel有这样的一个假设:

所有运行linux kernel的设备,在I2C总线里面,都是I2C master(至于I2C slave,抱歉,kernel不管!)。

正是基于这样的假设,linux I2C framework才成为当前的样子,具体可参考本文后续的描述。

linux kernel I2C framework使用如下的软件拓扑抽象I2C硬件(我们可以一起领会一下其中的“设备模型”思想):

I2C_sw_topology

图片2 I2C S/W topology

1)platform bus(/sys/bus/platform)是驱动工程师常见的bus,用于挂载和CPU通过系统总线连接的各类外设。在I2C framework中,I2C控制器直接从属于platform bus,我们在linux kernel中常说的I2C driver,都是指I2C controller driver,都是以platform driver的形式存在,当然,对应的控制器是platform device。

2)与此同时,kernel抽象出I2C bus(/sys/bus/i2c),用于挂载和I2C controller通过I2C总线连接的各个I2C slave device。

3)比较特殊的地方是,I2C core使用一个虚拟实体----I2C adapter,抽象I2C controller有关的功能(主要是数据的收发),I2C adapter也挂载在I2C bus上。

4)I2C adapter和I2C slave device都挂载在I2C bus上,就可以方便的进行Master(I2C adapter)和Slave之间的匹配操作,并通过I2C core提供的统一接口,访问I2C salve device,进行数据的收发。

5)以上各实体在sysfs中的位置,已经在“图片2”中通过红色字体标注,大家可自行理解。

3. 软件框架

基于第2章所述的总线拓扑,Linux kernel抽象出如下的软件框架:

I2C_software_architecture

图片3 I2C framework software architecture

1)I2C framework的最终目标,是提供一种“访问I2C slave devices”的方法。由于这些slave devices由I2C controller控制,因而主要由I2C controller驱动实现这一目标。

2)经过I2C framework的抽象,consumer可以不用关心I2C总线的技术细节,只需要通过简单的API,就可以与slave devices进行数据交互。正常情况下,consumer是位于内核态的其它driver(如HDMI driver、touch screen driver等等)。与此同时,I2C framework也通过字符设备向用户空间提供类似的接口,用户空间程序可以通过该接口访问slave devices。

3)在I2C framework内部,有I2C core、I2C busses、I2C algos和I2C muxes四个模块。

4)I2C core使用I2C adapter和I2C algorithm两个子模块抽象I2C controller的功能,使用I2C client和I2C driver抽象I2C slave device的功能(对应设备模型中的device和device driver)。另外,基于I2C协议,通过smbus模块实现SMBus(System Management Bus,系统管理总线)的功能。

5)I2C busses是各个I2C controller drivers的集合,位于drivers/i2c/busses/目录下,驱动工程师常说的“I2C driver”就是指它们。

6)I2C algos包含了一些通用的I2C algorithm,所谓的algorithm,是指I2C协议包的生成方法,进而组合成I2C的read/write指令,一般情况下,都是由硬件实现,不需要特别关注该目录。

7)I2C muxes用于实现I2C bus的多路复用功能,属于奇葩的冷门功能,暂不过多介绍。

4. I2C有关的软件流程总结
TODO(会在后续文章完成之后再回来补充)
#define _CRT_SECURE_NO_WARNINGS #define DECODING_TIME_TEST 1 #include "com_typedef.h" #include "app_util.h" #include "app_args.h" #include "dec_def.h" #if SVAC_NAL #include "com_svac_nal.h" #endif #if LINUX #include <execinfo.h> #include <signal.h> #include <stdlib.h> #include <unistd.h> void handler(int sig) { void *array[10]; size_t size; // get void*'s for all entries on the stack size = backtrace(array, 10); // print out all the frames to stderr fprintf(stderr, "Error: signal %d:\n", sig); backtrace_symbols_fd(array, size, STDERR_FILENO); exit(1); } #endif #if MULTI_LAYER_FRAMEWORK int g_CountDOICyCleTime[MAX_LAYER]; // number to count the DOI cycle time. int g_DOIPrev[MAX_LAYER]; // the doi of previous frm. #else int g_CountDOICyCleTime; // number to count the DOI cycle time. int g_DOIPrev; // the doi of previous frm. #endif #define VERBOSE_FRAME VERBOSE_1 #define MAX_BS_BUF (32*1024*1024) /* byte */ static char op_fname_inp[256] = "\0"; #if MULTI_LAYER_FRAMEWORK static char op_fname_out[MAX_LAYER][256] = { "\0", "\0"}; #else static char op_fname_out[256] = "\0"; #endif static int op_max_frm_num = 0; static int op_use_pic_signature = 0; static int op_clip_org_size = 0; static int op_bit_depth_output_cfg = 0; static int op_bit_depth_output = 0; #if CU_LEVEL_PRIVACY static int op_user_permission = 0; #endif #if LIBVC_ON static char op_fname_inp_libpics[256] = "\0"; /* bitstream of libpics */ static char op_fname_out_libpics[256] = "\0"; /* reconstructed yuv of libpics */ #endif #if LIB_PIC_ERR_TOL unsigned int bs_real_size = 0; #endif typedef enum _STATES { STATE_DECODING, STATE_BUMPING #if LIB_PIC_ERR_TOL , STATE_LIBPIC_COLLECTING #endif } STATES; typedef enum _OP_FLAGS { OP_FLAG_FNAME_INP, OP_FLAG_FNAME_OUT, #if MULTI_LAYER_FRAMEWORK OP_FLAG_FNAME_OUT1, #endif OP_FLAG_MAX_FRM_NUM, OP_FLAG_USE_PIC_SIGN, OP_FLAG_CLIP_ORG_SIZE, OP_FLAG_OUT_BIT_DEPTH, #if CU_LEVEL_PRIVACY OP_USER_PERMISSION, #endif OP_FLAG_VERBOSE, #if LIBVC_ON OP_FLAG_FNAME_INP_LIBPICS, OP_FLAG_FNAME_OUT_LIBPICS, #endif OP_FLAG_MAX } OP_FLAGS; static int op_flag[OP_FLAG_MAX] = {0}; static COM_ARGS_OPTION options[] = \ { { 'i', "input", ARGS_TYPE_STRING | ARGS_TYPE_MANDATORY, &op_flag[OP_FLAG_FNAME_INP], op_fname_inp, "file name of input bitstream"}, #if MULTI_LAYER_FRAMEWORK { 'o', "output", ARGS_TYPE_STRING, &op_flag[OP_FLAG_FNAME_OUT], op_fname_out[0],"file name of decoded output" }, { 'e', "output1", ARGS_TYPE_STRING, &op_flag[OP_FLAG_FNAME_OUT1], op_fname_out[1],"file name of decoded output" }, #else { 'o', "output", ARGS_TYPE_STRING, &op_flag[OP_FLAG_FNAME_OUT], op_fname_out,"file name of decoded output" }, #endif { 'f', "frames", ARGS_TYPE_INTEGER, &op_flag[OP_FLAG_MAX_FRM_NUM], &op_max_frm_num,"maximum number of frames to be decoded" }, { 's', "signature", COM_ARGS_VAL_TYPE_NONE, &op_flag[OP_FLAG_USE_PIC_SIGN], &op_use_pic_signature,"conformance check using picture signature (HASH)" }, { 'c', "clip_org_size", COM_ARGS_VAL_TYPE_NONE, &op_flag[OP_FLAG_CLIP_ORG_SIZE], &op_clip_org_size,"clip the output size to the original size (the input size at the encoder side)" }, { COM_ARGS_NO_KEY, "output_bit_depth", ARGS_TYPE_INTEGER, &op_flag[OP_FLAG_OUT_BIT_DEPTH], &op_bit_depth_output_cfg, "output bitdepth : 8 / 10 (default: internal bitdepth)" }, #if CU_LEVEL_PRIVACY { 'u', "user_permission", ARGS_TYPE_INTEGER , &op_flag[OP_USER_PERMISSION], &op_user_permission, "decoder user permission: 0 / 1 (default: 0)" }, #endif { 'v', "verbose", ARGS_TYPE_INTEGER, &op_flag[OP_FLAG_VERBOSE], &op_verbose, "verbose level\n" "\t 0: no message\n" "\t 1: frame-level messages (default)\n" "\t 2: all messages\n" }, #if LIBVC_ON { COM_ARGS_NO_KEY, "input_libpics", ARGS_TYPE_STRING, &op_flag[OP_FLAG_FNAME_INP_LIBPICS], op_fname_inp_libpics, "file name of input libpics bitstream" }, { COM_ARGS_NO_KEY, "output_libpics", ARGS_TYPE_STRING, &op_flag[OP_FLAG_FNAME_OUT_LIBPICS], op_fname_out_libpics, "file name of decoded libpics output" }, #endif { 0, "", COM_ARGS_VAL_TYPE_NONE, NULL, NULL, "" } /* termination */ }; #define NUM_ARG_OPTION ((int)(sizeof(options)/sizeof(options[0]))-1) static void print_usage(void) { int i; char str[1024]; v0print("< Usage >\n"); for(i=0; i<NUM_ARG_OPTION; i++) { if(com_args_get_help(options, i, str) < 0) return; v0print("%s\n", str); } } static int xFindNextStartCode(FILE * fp, int * ruiPacketSize, unsigned char *pucBuffer) { unsigned int uiDummy = 0; char bEndOfStream = 0; size_t ret = 0; #if SVAC_NAL ret = fread(&uiDummy, 1, 3, fp); if (ret != 3) { return -1; } #else ret = fread(&uiDummy, 1, 2, fp); if (ret != 2) { return -1; } #endif if (feof(fp)) { return -1; } assert(0 == uiDummy); ret = fread(&uiDummy, 1, 1, fp); if (ret != 1) { return -1; } if (feof(fp)) { return -1; } assert(1 == uiDummy); int iNextStartCodeBytes = 0; unsigned int iBytesRead = 0; unsigned int uiZeros = 0; unsigned char pucBuffer_Temp[16]; int iBytesRead_Temp = 0; #if SVAC_NAL pucBuffer[iBytesRead++] = 0x00; #endif pucBuffer[iBytesRead++] = 0x00; pucBuffer[iBytesRead++] = 0x00; pucBuffer[iBytesRead++] = 0x01; while (1) { unsigned char ucByte = 0; ret = fread(&ucByte, 1, 1, fp); if (feof(fp)) { iNextStartCodeBytes = 0; bEndOfStream = 1; break; } pucBuffer[iBytesRead++] = ucByte; if (1 < ucByte) { uiZeros = 0; } else if (0 == ucByte) { uiZeros++; } else if (uiZeros > 1) { iBytesRead_Temp = 0; pucBuffer_Temp[iBytesRead_Temp] = ucByte; iBytesRead_Temp++; ret = fread(&ucByte, 1, 1, fp); if (ret != 1) { return -1; } pucBuffer_Temp[iBytesRead_Temp] = ucByte; pucBuffer[iBytesRead++] = ucByte; iBytesRead_Temp++; #if SVAC_NAL if (pucBuffer_Temp[0] == 0x01 && ( pucBuffer_Temp[1] == SVAC_SPS #if SVAC_SECURITY_PARAM_SET || pucBuffer_Temp[1] == SVAC_SEC_PS #endif #if SVAC_AUTHENTICATION || pucBuffer_Temp[1] == SVAC_AUTH_DATA #endif #if HLS_OPT_PPS || pucBuffer_Temp[1] == SVAC_PPS || pucBuffer_Temp[1] == SVAC_PH || (pucBuffer[4] == SVAC_PH && (pucBuffer_Temp[1] == SVAC_IDR || pucBuffer_Temp[1] == SVAC_NON_RAP || pucBuffer_Temp[1] == SVAC_RAP_I #if LIB_PIC_MIXBIN #if DISPLAY_L_NAL_TYPE || pucBuffer_Temp[1] == SVAC_CRR_L || pucBuffer_Temp[1] == SVAC_CRR_DP || pucBuffer_Temp[1] == SVAC_CRR_RL #if LIB_PIC_ERR_TOL || pucBuffer_Temp[1] == SVAC_CRR_DL #endif )) || ((pucBuffer_Temp[1] == SVAC_CRR_L #if LIB_PIC_ERR_TOL || pucBuffer_Temp[1] == SVAC_CRR_DL #endif || pucBuffer_Temp[1] == SVAC_EOS || pucBuffer_Temp[1] == SVAC_EOCVS #else || pucBuffer_Temp[1] == SVAC_CRR_L || pucBuffer_Temp[1] == SVAC_CRR_RL)) || ((pucBuffer_Temp[1] == SVAC_CRR_L #endif #endif )) #else || pucBuffer_Temp[1] == SVAC_PPS || (pucBuffer[4] == SVAC_PPS && (pucBuffer_Temp[1] == SVAC_IDR || pucBuffer_Temp[1] == SVAC_NON_IDR #if LIB_PIC_MIXBIN || pucBuffer_Temp[1] == SVAC_CRR_L || pucBuffer_Temp[1] == SVAC_CRR_RL)) || ((pucBuffer_Temp[1] == SVAC_CRR_L #endif )) #endif ) ) #else if( pucBuffer_Temp[0] == 0x01 && (pucBuffer_Temp[1] == 0xb3 || pucBuffer_Temp[1] == 0xb6 || pucBuffer_Temp[1] == 0xb0 || pucBuffer_Temp[1] == 0x00 || pucBuffer_Temp[1] == 0xb1) ) #endif { #if SVAC_NAL iNextStartCodeBytes = 3 + 1 + 1; #else iNextStartCodeBytes = 2 + 1 + 1; #endif uiZeros = 0; break; } else { uiZeros = 0; iNextStartCodeBytes = 0;// 2 + 1 + 1; } } else { uiZeros = 0; } } *ruiPacketSize = iBytesRead - iNextStartCodeBytes; if (bEndOfStream) { return 0; } if (fseek(fp, -1 * iNextStartCodeBytes, SEEK_CUR) != 0) { printf("file seek failed!\n"); }; #if SVAC_NAL ret = fread(&uiDummy, 1, 4, fp); if (ret != 4) { return -1; } assert(0x01000000 == uiDummy); fseek(fp, -4, SEEK_CUR); #endif return 0; } static unsigned int initParsingConvertPayloadToRBSP(const unsigned int uiBytesRead, unsigned char* pBuffer, unsigned char* pBuffer2 #if CU_LEVEL_PRIVACY , unsigned char * bs_buf3,int *privacy_size #endif ) { unsigned int uiZeroCount = 0; unsigned int uiBytesReadOffset = 0; #if !NAL unsigned int uiBitsReadOffset = 0; #endif const unsigned char *pucRead = pBuffer; unsigned char *pucWrite = pBuffer2; unsigned int uiWriteOffset = uiBytesReadOffset; unsigned char ucCurByte = pucRead[uiBytesReadOffset]; #if CU_LEVEL_PRIVACY unsigned char *pucWrite_privacy = bs_buf3; unsigned int uiWriteOffset_temp0 = 0; unsigned int uiWriteOffset_temp1 = 0; unsigned int privacy = 0; unsigned int patch_flag = 1; #endif for (uiBytesReadOffset = 0; uiBytesReadOffset < uiBytesRead; uiBytesReadOffset++) { ucCurByte = pucRead[uiBytesReadOffset]; #if CU_LEVEL_PRIVACY if (patch_flag == 0 && pucRead[uiBytesReadOffset] == 0 && pucRead[uiBytesReadOffset + 1] == 0 && pucRead[uiBytesReadOffset + 2] == 0 && pucRead[uiBytesReadOffset + 3] == 1 && pucRead[uiBytesReadOffset + 4] == SVAC_PRIVACY) { uiWriteOffset_temp0 = uiWriteOffset; pucWrite = bs_buf3; uiWriteOffset = uiWriteOffset_temp1; privacy = 1; } if (pucRead[uiBytesReadOffset] == 0 && pucRead[uiBytesReadOffset + 1] == 0 && pucRead[uiBytesReadOffset + 2] == 0 && pucRead[uiBytesReadOffset + 3] == 1 && (pucRead[uiBytesReadOffset + 4] == SVAC_CRR_DP || pucRead[uiBytesReadOffset + 4] == SVAC_CRR_DL || pucRead[uiBytesReadOffset + 4] == SVAC_CRR_L || pucRead[uiBytesReadOffset + 4] == SVAC_CRR_RL || pucRead[uiBytesReadOffset + 4] == SVAC_IDR || pucRead[uiBytesReadOffset + 4] == SVAC_RAP_I || pucRead[uiBytesReadOffset + 4] == SVAC_NON_RAP)) { if (privacy == 1) { uiWriteOffset_temp1 = uiWriteOffset; uiWriteOffset = uiWriteOffset_temp0; } pucWrite = pBuffer2; privacy = 0; patch_flag = 0; } #endif #if NAL if (2 <= uiZeroCount && 0x03 == pucRead[uiBytesReadOffset]) { if (uiBytesReadOffset >= uiBytesRead) { break; } uiZeroCount = 0; uiBytesReadOffset++; ucCurByte = pucRead[uiBytesReadOffset]; pucWrite[uiWriteOffset] = pucRead[uiBytesReadOffset]; } else if (2 <= uiZeroCount && 0x00 == pucRead[uiBytesReadOffset]) { if (uiBytesReadOffset >= uiBytesRead) { break; } assert(pucRead[uiBytesReadOffset + 1] == 1); uiZeroCount = 0; uiBytesReadOffset++; ucCurByte = pucRead[uiBytesReadOffset]; pucWrite[uiWriteOffset] = pucRead[uiBytesReadOffset]; } else if (2 <= uiZeroCount && 0x02 == pucRead[uiBytesReadOffset]) { assert(0); } #else if (2 <= uiZeroCount && 0x02 == pucRead[uiBytesReadOffset]) { pucWrite[uiWriteOffset] = ((pucRead[uiBytesReadOffset] >> 2) << (uiBitsReadOffset + 2)); uiBitsReadOffset += 2; uiZeroCount = 0; if (uiBitsReadOffset >= 8) { uiBitsReadOffset = 0; continue; } if (uiBytesReadOffset >= uiBytesRead) { break; } } #endif else if (2 <= uiZeroCount && 0x01 == pucRead[uiBytesReadOffset]) { #if !NAL uiBitsReadOffset = 0; #endif pucWrite[uiWriteOffset] = pucRead[uiBytesReadOffset]; } else { #if NAL pucWrite[uiWriteOffset] = pucRead[uiBytesReadOffset]; #else pucWrite[uiWriteOffset] = (pucRead[uiBytesReadOffset] << uiBitsReadOffset); #endif } #if !NAL if (uiBytesReadOffset + 1 < uiBytesRead) { pucWrite[uiWriteOffset] |= (pucRead[uiBytesReadOffset + 1] >> (8 - uiBitsReadOffset)); } #endif uiWriteOffset++; if (0x00 == ucCurByte) { uiZeroCount++; } else { uiZeroCount = 0; } } #if CU_LEVEL_PRIVACY if (privacy == 1) { privacy_size[0] = uiWriteOffset; uiWriteOffset_temp1 = uiWriteOffset; } else { uiWriteOffset_temp0 = uiWriteOffset; privacy_size[0] = uiWriteOffset_temp1; } //uiWriteOffset = uiWriteOffset_temp0 + uiWriteOffset_temp1; //// th just clear the remaining bits in the buffer //for (unsigned int ui = uiWriteOffset; ui < uiBytesRead; ui++) //{ // pBuffer2[uiWriteOffset_temp0++] = 0; // bs_buf3[uiWriteOffset_temp1++] = 0; //} uiWriteOffset = uiWriteOffset_temp0; #else // th just clear the remaining bits in the buffer for (unsigned int ui = uiWriteOffset; ui < uiBytesRead; ui++) { pucWrite[ui] = 0; } #endif memcpy(pBuffer, pBuffer2, uiWriteOffset); pBuffer[uiWriteOffset] = 0x00; pBuffer[uiWriteOffset + 1] = 0x00; pBuffer[uiWriteOffset + 2] = 0x01; #if FIX_DEAD_LOOP pBuffer[uiWriteOffset + 3] = 0x00; #endif #if LIB_PIC_ERR_TOL bs_real_size = uiWriteOffset + 4; #endif return uiBytesRead; } static int read_a_bs(FILE * fp, int * pos, unsigned char * bs_buf, unsigned char * bs_buf2 #if CU_LEVEL_PRIVACY , unsigned char * bs_buf3,int *bs_buf3_size #endif #if SVAC_UD_MD5_STREAM , COM_BITB * bitb #endif ) { int read_size, bs_size; unsigned char b = 0; bs_size = 0; read_size = 0; if (!fseek(fp, *pos, SEEK_SET)) { int ret = 0; ret = xFindNextStartCode(fp, &bs_size, bs_buf); if (ret == -1) { v2print("End of file\n"); return -1; } #if SVAC_UD_MD5_STREAM memcpy(bitb->addr3, bs_buf, bs_size); bitb->addr3 = (unsigned char *)bitb->addr3 + (unsigned int)bs_size; assert(((u8 *)bitb->addr3 - (u8 *)bitb->addr3_beg) <= MAX_BS_BUF); #endif read_size = initParsingConvertPayloadToRBSP(bs_size, bs_buf, bs_buf2 #if CU_LEVEL_PRIVACY , bs_buf3, bs_buf3_size #endif ); } else { v0print("Cannot seek bitstream!\n"); return -1; } return read_size; } static int print_stat(DEC_STAT * stat, int ret) { #if LIBVC_ON char *stype = NULL; #else char stype = 0; #endif int i, j; if(COM_SUCCEEDED(ret)) { if (stat->ctype == COM_CT_SLICE || stat->ctype == COM_CT_PICTURE) { #if LIBVC_ON if (stat->is_RLpic_flag) { stype = "RL"; } else { switch (stat->stype) { case COM_ST_I: stype = "I"; break; case COM_ST_P: stype = "P"; break; case COM_ST_B: stype = "B"; break; #if SVAC_NAL case COM_ST_IDR: stype = "IDR"; break; case COM_ST_CRA: stype = "CRA"; break; #endif case COM_ST_UNKNOWN: default: stype = "U"; break; } } #else switch (stat->stype) { case COM_ST_I: stype = 'I'; break; case COM_ST_P: stype = 'P'; break; case COM_ST_B: stype = 'B'; break; case COM_ST_UNKNOWN: default: stype = 'U'; break; } #endif } if(stat->ctype == COM_CT_SLICE) { #if LIBVC_ON v1print("%2s-slice", stype); #else v1print("%c-slice", stype); #endif v1print(" (poc=%d) ", (int)stat->poc); #if TSVC_OPT v1print("(temporal_id = %d)", (int)stat->temporal_id); #endif } #if TSVC_OPT else if (stat->ctype == COM_CT_SIGN) { v1print("sei message\n"); printf(" num_of_temporal_level %d\n", stat->temporal_layer_num); for (int i = 0; i < stat->temporal_layer_num; i++) { printf(" temporal_fps %d ", stat->temporal_fps[i]); printf(" temporal_bitrate_low %d ", stat->temporal_bitrate_low[i]); printf(" temporal_bitrate_up %d \n", stat->temporal_bitrate_up[i]); } } #endif else if(stat->ctype == COM_CT_SQH) { #if HLS_OPT_PPS v1print("SPS"); #else v1print("Sequence header"); #endif #if PRINT_SQH_PARAM_DEC printf( "\n*** HLS Params: bitDep %d", stat->internal_bit_depth ); #if PHASE_2_PROFILE printf(" profile 0x%x", stat->profile_id); #endif #if CFG_LEVEL_ID printf(" level_id 0x%x", stat->level_id); #endif #if ENHANCE_TSPCM printf("\n*** Intra tools: TSCPM %d Enhance_TSCPM %d IPF %d IntraDT %d IPCM %d", (stat->intra_tools >> 0) & 0x1, (stat->intra_tools >> 1) & 0x1, (stat->intra_tools >> 2) & 0x1, (stat->intra_tools >> 3) & 0x1, (stat->intra_tools >> 4) & 0x1); #if MIPF printf(" MIPF %d", (stat->intra_tools >> 5) & 0x1); #endif #else printf( "\n*** Intra tools: TSCPM %d IPF %d IntraDT %d IPCM %d", (stat->intra_tools >> 0) & 0x1, (stat->intra_tools >> 1) & 0x1, (stat->intra_tools >> 2) & 0x1, (stat->intra_tools >> 3) & 0x1 ); #if MIPF printf(" MIPF %d", (stat->intra_tools >> 4) & 0x1); #endif #endif #if PMC || EPMC printf(" PMC %d", (stat->intra_tools >> 6) & 0x1); #endif #if IPF_CHROMA printf(" IPF_CHROMA %d", (stat->intra_tools >> 7) & 0x01); #endif #if IIP printf(" IIP %d", (stat->intra_tools >> 8) & 0x01); #endif #if SAWP printf(" SAWP %d", (stat->intra_tools >> 9) & 0x01); #endif // SAWP #if AWP printf("\n*** Inter tools: AFFINE %d AMVR %d UMVE %d EMVR %d SMVD %d AWP %d HMVP %d ", (stat->inter_tools >> 0) & 0x1, (stat->inter_tools >> 1) & 0x1, (stat->inter_tools >> 2) & 0x1, (stat->inter_tools >> 3) & 0x1, (stat->inter_tools >> 4) & 0x1, (stat->inter_tools >> 5) & 0x1, (stat->inter_tools >> 10) & 0xf); #else printf( "\n*** Inter tools: AFFINE %d AMVR %d UMVE %d EMVR %d SMVD %d HMVP %d ", (stat->inter_tools >> 0) & 0x1, (stat->inter_tools >> 1) & 0x1, (stat->inter_tools >> 2) & 0x1, (stat->inter_tools >> 3) & 0x1, (stat->inter_tools >> 4) & 0x1, (stat->inter_tools >> 10) & 0xf ); #endif printf( "\n*** Trans tools: NSST %d PBT %d ", (stat->trans_tools >> 0) & 0x1, (stat->trans_tools >> 1) & 0x1 ); printf("\n*** Filter tools: SAO %d ALF %d ", (stat->filte_tools >> 0) & 0x1, (stat->filte_tools >> 1) & 0x1); printf( "\n*** SCC tools: "); #if FIMC printf( " FIMC %d ", (stat->scc_tools >> 0) & 0x1); #endif #if IBC_BVP printf(" HBVP %d ", (stat->scc_tools >> 1) & 0xf); #endif #endif } #if HLS_OPT_PPS else if (stat->ctype == COM_CT_PPS) { v1print("PPS"); #if HLS_OPT_PPS printf(" pps_id %d", stat->pps_id); #endif } #endif else if (stat->ctype == COM_CT_PICTURE) { #if LIBVC_ON v1print("%2s-picture header", stype); #else v1print("%c-picture header", stype); #endif #if HLS_OPT_PPS printf(" pic_pps_id %d", stat->pic_pps_id); #endif } else if( stat->ctype == COM_CT_SEQ_END ) { v1print( "video_sequence_end_code" ); } #if LIB_PIC_MIXBIN else if (stat->ctype == COM_CT_CRR_SLICE_IMCOPLETE || stat->ctype == COM_CT_CRR_SLICE) { v0print("L-slice"); #if LIBPIC_DISPLAY if (!stat->is_dp_crr) #endif v1print(" (patch_idx=%d) ", (int)stat->patch_idx); } #endif #if SVAC_SECURITY_PARAM_SET else if (stat->ctype == COM_CT_SEC_PARA_SET) { v1print("security parameter set"); } #endif #if SVAC_AUTHENTICATION else if (stat->ctype == COM_CT_AUTH) { v1print("authentication data"); } #endif else { v0print("Unknown bitstream"); } if (stat->ctype == COM_CT_SLICE) { for (i = 0; i < 2; i++) { #if LIBVC_ON if (stat->is_RLpic_flag) { v1print("[Lib%d ", i); } else #endif { v1print("[L%d ", i); } #if MULTI_LAYER_FRAMEWORK for (j = 0; j < stat->refpic_num[i]; j++) { if (stat->reflib[i][j] == 1) v1print("LIB"); if (stat->reflib[i][j] == 2) v1print("(l%d)", stat->reflayer[i][j]); v1print("%d ", stat->refpic[i][j]); } #else for (j = 0; j < stat->refpic_num[i]; j++) v1print("%d ", stat->refpic[i][j]); #endif v1print("] "); } } if (ret == COM_OK) { v1print("\n"); } else if(ret == COM_OK_FRM_DELAYED) { v1print("->Frame delayed\n"); } else if(ret == COM_OK_DIM_CHANGED) { v1print("->Resolution changed\n"); } else { v1print("->Unknown OK code = %d\n", ret); } } else { v0print("Decoding error = %d\n", ret); } return 0; } static int set_extra_config(DEC id) { int ret, size, value; if(op_use_pic_signature) { value = 1; size = 4; ret = dec_config(id, DEC_CFG_SET_USE_PIC_SIGNATURE, &value, &size); if(COM_FAILED(ret)) { v0print("failed to set config for picture signature\n"); return -1; } } #if CU_LEVEL_PRIVACY if (op_user_permission) { value = 1; size = 4; ret = dec_config(id, DEC_CFG_SET_USER_PERMISSION, &value, &size); if (COM_FAILED(ret)) { v0print("failed to set config for picture signature\n"); return -1; } } #endif return 0; } static int write_dec_img(DEC id, char * fname, COM_IMGB * img, int bit_depth_internal) { COM_IMGB* imgb_t = NULL; if (imgb_t == NULL) { imgb_t = imgb_alloc(img->width[0], img->height[0], COM_COLORSPACE_YUV420, bit_depth_internal); if (imgb_t == NULL) { v0print("failed to allocate temporay image buffer\n"); return -1; } } if (op_bit_depth_output_cfg == 0) { op_bit_depth_output = bit_depth_internal; } else { op_bit_depth_output = op_bit_depth_output_cfg; } imgb_cpy_conv_rec(imgb_t, img, op_bit_depth_output, bit_depth_internal); DEC_CTX *ctx = (DEC_CTX *)id; int dec_width = imgb_t->width[0]; int dec_height = imgb_t->height[0]; if (op_clip_org_size) { #if MULTI_LAYER_FRAMEWORK dec_width = ctx->info.sqh.horizontal_size[ctx->layer_id]; dec_height = ctx->info.sqh.vertical_size[ctx->layer_id]; #else dec_width = ctx->info.sqh.horizontal_size; dec_height = ctx->info.sqh.vertical_size; #endif } #if LIBVC_ON if (imgb_write(fname, imgb_t, op_bit_depth_output, dec_width, dec_height)) return -1; #else if (imgb_write(op_fname_out, img, dec_width, dec_height)) return -1; #endif if (imgb_t) { imgb_free(imgb_t); } return COM_OK; } #if LIBVC_ON void set_livcdata_dec(DEC id_lib, LibVCData *libvc_data) { DEC_CTX * tmp_ctx = (DEC_CTX *)id_lib; tmp_ctx->dpm.libvc_data = libvc_data; } int decode_libpics(DEC_CDSC * cdsc, LibVCData* libvc_data) { STATES state_lib = STATE_DECODING; unsigned char * bs_buf_lib = NULL; unsigned char * bs_buf_lib2 = NULL; DEC id_lib = NULL; COM_BITB bitb_lib; COM_IMGB * imgb_lib; DEC_STAT stat_lib; int ret; COM_CLK clk_beg_lib, clk_tot_lib; int bs_cnt_lib, pic_cnt_lib; int bs_size_lib, bs_read_pos_lib = 0; int width_lib, height_lib; FILE * fp_bs_lib = NULL; #if LINUX signal(SIGSEGV, handler); // install our handler #endif #if DECODING_TIME_TEST clk_beg_lib = com_clk_get(); #endif /* open input bitstream */ fp_bs_lib = fopen(op_fname_inp_libpics, "rb"); if (fp_bs_lib == NULL) { v0print("ERROR: cannot open libpics bitstream file = %s\n", op_fname_inp_libpics); print_usage(); return -1; } if (op_flag[OP_FLAG_FNAME_OUT_LIBPICS]) { /* remove decoded file contents if exists */ FILE * fp; fp = fopen(op_fname_out_libpics, "wb"); if (fp == NULL) { v0print("ERROR: cannot create a decoded libpics file\n"); print_usage(); return -1; } fclose(fp); } bs_buf_lib = malloc(MAX_BS_BUF); if (bs_buf_lib == NULL) { v0print("ERROR: cannot allocate bit buffer, size=%d\n", MAX_BS_BUF); return -1; } bs_buf_lib2 = malloc(MAX_BS_BUF); if (bs_buf_lib2 == NULL) { v0print("ERROR: cannot allocate bit buffer, size2=%d\n", MAX_BS_BUF); return -1; } #if CU_LEVEL_PRIVACY unsigned char *bs_buf_lib3 = malloc(MAX_BS_BUF); if (bs_buf_lib3 == NULL) { v0print("ERROR: cannot allocate bit buffer, size2=%d\n", MAX_BS_BUF); return -1; } #endif #if SVAC_UD_MD5_STREAM unsigned char * bs_buf4 = NULL; unsigned char * bs_buf5 = NULL; bs_buf5 = malloc(MAX_BS_BUF); if (bs_buf5 == NULL) { v0print("ERROR: cannot allocate bit buffer, size=%d\n", MAX_BS_BUF); return -1; } bitb_lib.addr3 = bs_buf5; bitb_lib.addr3_beg = bs_buf5; bs_buf4 = malloc(MAX_BS_BUF); if (bs_buf4 == NULL) { v0print("ERROR: cannot allocate bit buffer, size=%d\n", MAX_BS_BUF); return -1; } unsigned char * buf4_p = bs_buf4; unsigned char * buf4_beg = bs_buf4; #endif id_lib = dec_create(cdsc, NULL); if (id_lib == NULL) { v0print("ERROR: cannot create decoder\n"); return -1; } set_livcdata_dec(id_lib, libvc_data); if (set_extra_config(id_lib)) { v0print("ERROR: cannot set extra configurations\n"); return -1; } pic_cnt_lib = 0; clk_tot_lib = 0; bs_cnt_lib = 0; width_lib = height_lib = 0; #if CU_LEVEL_PRIVACY int bs_buf3_size = 0; #endif while (1) { if (state_lib == STATE_DECODING) { bs_size_lib = read_a_bs(fp_bs_lib, &bs_read_pos_lib, bs_buf_lib, bs_buf_lib2 #if CU_LEVEL_PRIVACY , bs_buf_lib3, &bs_buf3_size #endif #if SVAC_UD_MD5_STREAM , &bitb_lib #endif ); if (bs_size_lib <= 0) { state_lib = STATE_BUMPING; v1print("bumping process starting...\n"); continue; } bs_read_pos_lib += (bs_size_lib); bitb_lib.addr = bs_buf_lib; bitb_lib.ssize = bs_size_lib; bitb_lib.bsize = MAX_BS_BUF; #if CU_LEVEL_PRIVACY bitb_lib.addr2 = bs_buf_lib3; bitb_lib.ssize2 = bs_buf3_size; #endif #if !DECODING_TIME_TEST clk_beg_lib = com_clk_get(); #endif /* main decoding block */ ret = dec_cnk((DEC_CTX *)id_lib, &bitb_lib, &stat_lib); if (COM_FAILED(ret)) { v0print("failed to decode bitstream\n"); return -1; } #if !DECODING_TIME_TEST clk_tot_lib += com_clk_from(clk_beg_lib); #endif } if (stat_lib.fnum >= 0 || state_lib == STATE_BUMPING) { ret = dec_pull_frm((DEC_CTX *)id_lib, &imgb_lib, state_lib); if (ret == COM_ERR_UNEXPECTED) { v1print("bumping process completed\n"); goto END; } else if (COM_FAILED(ret)) { v0print("failed to pull the decoded image\n"); return -1; } } else { imgb_lib = NULL; } if (imgb_lib) { width_lib = imgb_lib->width[0]; height_lib = imgb_lib->height[0]; if (op_flag[OP_FLAG_FNAME_OUT_LIBPICS]) { write_dec_img(id_lib, op_fname_out_libpics, imgb_lib, ((DEC_CTX *)id_lib)->info.bit_depth_internal); } imgb_lib->release(imgb_lib); pic_cnt_lib++; } } END: #if DECODING_TIME_TEST clk_tot_lib += com_clk_from(clk_beg_lib); #endif libvc_data->num_lib_pic = pic_cnt_lib; #if CU_LEVEL_PRIVACY if (bs_buf_lib3) { free(bs_buf_lib3); bs_buf_lib3 = NULL; } #endif if (id_lib) dec_delete(id_lib); if (fp_bs_lib) fclose(fp_bs_lib); if (bs_buf_lib) free(bs_buf_lib); return 0; } #endif int main(int argc, const char **argv) { FILE *fp = fopen("dec_decode_cu.log", "w"); if (fp) fclose(fp); STATES state = STATE_DECODING; unsigned char * bs_buf = NULL; unsigned char * bs_buf2 = NULL; #if SVAC_UD_MD5_STREAM unsigned char * bs_buf4 = NULL; unsigned char * bs_buf5 = NULL; #endif #if MULTI_LAYER_FRAMEWORK DEC id[MAX_LAYER] = { NULL, NULL }; DEC_CDSC cdsc[MAX_LAYER]; #else DEC id = NULL; DEC_CDSC cdsc; #endif COM_BITB bitb; COM_IMGB * imgb; DEC_STAT stat; int ret; COM_CLK clk_beg, clk_tot; int bs_cnt, pic_cnt; int bs_size = 0, bs_read_pos = 0; int width, height; FILE * fp_bs = NULL; #if LIB_PIC_ERR_TOL int libpic_num_patch = 0; int *libpic_bs_size = NULL; unsigned char * libpic_bs_buf = NULL; int num_nalu = 0; int collect_libpic_state = 0; unsigned int libpic_addr = 0; #endif #if SVAC_AI_SEG_EXT fp_seg = fopen("dec_aiseg.bin", "wb"); #endif #if ENC_DEC_TRACE fp_trace = NULL; #endif #if CU_LEVEL_PRIVACY unsigned int libpic_addr_privacy = 0; int *libpic_bs_size_privacy = NULL; unsigned char * libpic_bs_buf_privacy = NULL; int num_nalu_privacy = 0; #endif #if LINUX signal(SIGSEGV, handler); // install our handler #endif #if DECODING_TIME_TEST clk_beg = com_clk_get(); #endif /* parse options */ ret = com_args_parse_all(argc, argv, options); if(ret != 0) { if(ret > 0) v0print("-%c argument should be set\n", ret); print_usage(); return -1; } /* open input bitstream */ fp_bs = fopen(op_fname_inp, "rb"); if(fp_bs == NULL) { v0print("ERROR: cannot open bitstream file = %s\n", op_fname_inp); print_usage(); return -1; } if(op_flag[OP_FLAG_FNAME_OUT]) { /* remove decoded file contents if exists */ FILE * fp; #if MULTI_LAYER_FRAMEWORK fp = fopen(op_fname_out[0], "wb"); #else fp = fopen(op_fname_out, "wb"); #endif if(fp == NULL) { v0print("ERROR: cannot create a decoded file\n"); print_usage(); return -1; } fclose(fp); } #if MULTI_LAYER_FRAMEWORK if (op_flag[OP_FLAG_FNAME_OUT1]) { /* remove decoded file contents if exists */ FILE* fp; fp = fopen(op_fname_out[1], "wb"); if (fp == NULL) { v0print("ERROR: cannot create a EL decoded file\n"); print_usage(); return -1; } fclose(fp); } #endif bs_buf = malloc(MAX_BS_BUF); if(bs_buf == NULL) { v0print("ERROR: cannot allocate bit buffer, size=%d\n", MAX_BS_BUF); return -1; } bs_buf2 = malloc(MAX_BS_BUF); if (bs_buf2 == NULL) { v0print("ERROR: cannot allocate bit buffer, size=%d\n", MAX_BS_BUF); return -1; } #if SVAC_UD_MD5_STREAM bs_buf5 = malloc(MAX_BS_BUF); if (bs_buf5 == NULL) { v0print("ERROR: cannot allocate bit buffer, size=%d\n", MAX_BS_BUF); return -1; } bitb.addr3 = bs_buf5; bitb.addr3_beg = bs_buf5; bs_buf4 = malloc(MAX_BS_BUF); if (bs_buf4 == NULL) { v0print("ERROR: cannot allocate bit buffer, size=%d\n", MAX_BS_BUF); return -1; } unsigned char * buf4_p = bs_buf4; unsigned char * buf4_beg = bs_buf4; #endif #if CU_LEVEL_PRIVACY unsigned char *bs_buf3 = malloc(MAX_BS_BUF); if (bs_buf3 == NULL) { v0print("ERROR: cannot allocate bit buffer, size=%d\n", MAX_BS_BUF); return -1; } #endif #if LIBVC_ON #if MULTI_LAYER_FRAMEWORK LibVCData libvc_data[MAX_LAYER]; for (int i = 0; i < MAX_LAYER; i++) { init_libvcdata(&libvc_data[i]); } #else LibVCData libvc_data; init_libvcdata(&libvc_data); #endif if (op_flag[OP_FLAG_FNAME_INP_LIBPICS]) { #if MULTI_LAYER_FRAMEWORK int err; for (int i = 0; i < MAX_LAYER; i++) { err = decode_libpics(&cdsc[i], &libvc_data[i]); if (err) { v0print("Error when decode lib pic!"); return -1; } libvc_data[i].is_libpic_prepared = 1; } #else int err = decode_libpics(&cdsc, &libvc_data); if (err) { v0print("Error when decode lib pic!"); return -1; } libvc_data.is_libpic_prepared = 1; #endif } #endif #if MULTI_LAYER_FRAMEWORK for (int i = 0; i < MAX_LAYER; i++) { id[i] = dec_create(&cdsc[i], NULL); dec_setlayer(id[i],i); if (id[i] == NULL) { v0print("ERROR: cannot create decoder\n"); return -1; } } #else id = dec_create(&cdsc, NULL); if(id == NULL) { v0print("ERROR: cannot create decoder\n"); return -1; } #endif #if LIBVC_ON #if MULTI_LAYER_FRAMEWORK for (int i = 0; i < MAX_LAYER; i++) { set_livcdata_dec(id[i], &libvc_data[i]); } #else set_livcdata_dec(id, &libvc_data); #endif #endif #if MULTI_LAYER_FRAMEWORK for (int i = 0; i < MAX_LAYER; i++) { if (set_extra_config(id[i])) { v0print("ERROR: cannot set extra configurations\n"); return -1; } } #else if (set_extra_config(id)) { v0print("ERROR: cannot set extra configurations\n"); return -1; } #endif pic_cnt = 0; clk_tot = 0; bs_cnt = 0; width = height = 0; #if MULTI_LAYER_FRAMEWORK for (int i = 0; i < MAX_LAYER; i++) { g_CountDOICyCleTime[i] = 0; // initialized the number . g_DOIPrev[i] = 0; } #else g_CountDOICyCleTime = 0; // initialized the number . g_DOIPrev = 0; #endif #if CU_LEVEL_PRIVACY int bs_buf3_size = 0; #endif while (1) { #if MULTI_LAYER_FRAMEWORK int nal_layer_id = 0; #endif if (state == STATE_DECODING) { bs_size = read_a_bs(fp_bs, &bs_read_pos, bs_buf, bs_buf2 #if CU_LEVEL_PRIVACY , bs_buf3, &bs_buf3_size #endif #if SVAC_UD_MD5_STREAM , &bitb #endif ); if (bs_size <= 0) { state = STATE_BUMPING; v1print("bumping process starting...\n"); continue; } bs_read_pos += bs_size; bitb.addr = bs_buf; #if CU_LEVEL_PRIVACY bitb.addr2 = bs_buf3; bitb.ssize2 = bs_buf3_size; bitb.ssize = bs_size - bs_buf3_size; #else bitb.ssize = bs_size; #endif bitb.bsize = MAX_BS_BUF; #if MULTI_LAYER_FRAMEWORK nal_layer_id = (bs_buf[4] >> 1) & 0x07; if (nal_layer_id == 0) { v1print("BL---[%4d]-th BS (%07dbytes) --> ", bs_cnt++, bs_size); } else { v1print("EL---[%4d]-th BS (%07dbytes) --> ", bs_cnt++, bs_size); } #else v1print("[%4d]-th BS (%07dbytes) --> ", bs_cnt++, bs_size); #endif #if LIB_PIC_ERR_TOL #if SVAC_PROGRESSIVE // 7 6 5 4 3 & 2 // temporal_nesting library_picture_enable library_stream duplicate_sqh library_picture_mode_index int library_picture_enable = bs_buf[7] & 0x40; int library_stream_flag = bs_buf[7] & 0x20; int library_picture_mode_index = (bs_buf[7] >> 2) & 3; #else // 7 6 5 4 3 2 1 & 0 // progressive_sequence field_coded_sequence temporal_nesting library_picture_enable library_stream duplicate_sqh library_picture_mode_index int library_picture_enable = bs_buf[7] & 0x10; int library_picture_enable_flag = bs_buf[7] & 8; #if EMULATION_PREVENT_BUGFIX int library_picture_mode_index = bs_buf[7] & 3; #else int library_picture_mode_index = ((bs_buf[7] & 1) << 1) + (bs_buf[8] >> 7); #endif #endif if (bs_buf[3] == SVAC_SPS && library_stream_flag && library_picture_mode_index == 0) { if (libpic_bs_buf == NULL) { libpic_bs_buf = malloc(MAX_BS_BUF); if (libpic_bs_buf == NULL) { v0print("ERROR: cannot allocate bit buffer, size=%d\n", MAX_BS_BUF); return -1; } } if (libpic_bs_size == NULL) { libpic_bs_size = malloc(sizeof(int) * 260); if (libpic_bs_size == NULL) { v0print("ERROR: cannot allocate bit buffer, size=%d\n", MAX_BS_BUF); return -1; } } #if CU_LEVEL_PRIVACY if (libpic_bs_buf_privacy == NULL) { libpic_bs_buf_privacy = malloc(MAX_BS_BUF); if (libpic_bs_buf_privacy == NULL) { v0print("ERROR: cannot allocate bit buffer, size=%d\n", MAX_BS_BUF); return -1; } } if (libpic_bs_size_privacy == NULL) { libpic_bs_size_privacy = malloc(sizeof(int) * 260); if (libpic_bs_size_privacy == NULL) { v0print("ERROR: cannot allocate bit buffer, size=%d\n", MAX_BS_BUF); return -1; } } num_nalu_privacy = 0; #endif memcpy(libpic_bs_buf, bs_buf, bs_real_size); state = STATE_LIBPIC_COLLECTING; libpic_bs_size[0] = bs_real_size; collect_libpic_state = 1; num_nalu = 1; libpic_addr = bs_real_size; #if SVAC_UD_MD5_STREAM unsigned int tmp_bs_size = (unsigned int)((unsigned char *)bitb.addr3 - (unsigned char *)bitb.addr3_beg); memcpy(buf4_p, bitb.addr3_beg, tmp_bs_size); buf4_p = buf4_p + tmp_bs_size; bitb.addr3 = (unsigned char *)bitb.addr3_beg; #endif continue; } else if (bs_buf[3] == SVAC_SPS && library_picture_enable && library_stream_flag == 0 && library_picture_mode_index == 0) { libpic_addr = 0; #if CU_LEVEL_PRIVACY libpic_addr_privacy = 0; #endif #if SVAC_UD_MD5_STREAM bitb.addr3_beg = buf4_beg; buf4_beg = bs_buf5; unsigned char * tmp_p = buf4_p; buf4_p = bitb.addr3; bitb.addr3 = tmp_p; #endif for (int i = 0; i < num_nalu; i++) { #if !DECODING_TIME_TEST clk_beg = com_clk_get(); #endif /* main decoding block */ bitb.addr = libpic_bs_buf + libpic_addr; bitb.ssize = libpic_bs_size[i] - 4; bitb.bsize = MAX_BS_BUF; libpic_addr += libpic_bs_size[i]; #if CU_LEVEL_PRIVACY if (i >= num_nalu - num_nalu_privacy) { bitb.addr2 = libpic_bs_buf_privacy + libpic_addr_privacy; bitb.ssize2 = libpic_bs_size_privacy[i - num_nalu + num_nalu_privacy] + 4 ; libpic_addr_privacy += libpic_bs_size_privacy[i - num_nalu + num_nalu_privacy]; } #endif #if MULTI_LAYER_FRAMEWORK ret = dec_cnk((DEC_CTX*)id[0], &bitb, &stat); #else ret = dec_cnk((DEC_CTX*)id, &bitb, &stat); #endif if (stat.ctype == COM_CT_SEQ_END) { state = STATE_BUMPING; v1print("bumping process starting...\n"); continue; } if (COM_FAILED(ret)) { v0print("failed to decode bitstream\n"); return -1; } #if !DECODING_TIME_TEST clk_tot += com_clk_from(clk_beg); #endif print_stat(&stat, ret); } #if SVAC_UD_MD5_STREAM bitb.addr3_beg = buf4_beg; bitb.addr3 = buf4_p; buf4_beg = bs_buf4; buf4_p = bs_buf4; #endif num_nalu = 0; libpic_addr = 0; bitb.addr = bs_buf; bitb.ssize = bs_size; bitb.bsize = MAX_BS_BUF; } #endif #if !DECODING_TIME_TEST clk_beg = com_clk_get(); #endif /* main decoding block */ #if MULTI_LAYER_FRAMEWORK if (nal_layer_id == 0) { DEC_CTX* ctx_t = (DEC_CTX*)id[0]; ctx_t->ctx_e = id[1]; ret = dec_cnk((DEC_CTX*)id[0], &bitb, &stat); } else { DEC_CTX* ctx_e = (DEC_CTX*)id[nal_layer_id]; assert(ctx_e->layer_id == nal_layer_id); if (!ctx_e->init_sps_pps) { DEC_CTX* ctx_b = (DEC_CTX*)id[0]; ctx_e->ctx_b =id[ctx_b->info.sqh.ref_layer_id[nal_layer_id]]; COM_SQH* sqh_e = &ctx_e->info.sqh; COM_SQH* sqh_b = &ctx_b->info.sqh; memcpy(sqh_e, sqh_b, sizeof(COM_SQH)); COM_PIC_PARA_SET* pps_e = &ctx_e->info.pps[0]; memcpy(pps_e, ctx_b->info.pps, sizeof(COM_PIC_PARA_SET)); #if LIBVC_ON ctx_e->dpm.libvc_data->is_libpic_processing = sqh_b->library_stream_flag; ctx_e->dpm.libvc_data->library_picture_enable_flag = sqh_b->library_picture_enable_flag; #endif #if HIGH_LEVEL_PRIVACY COM_PRIVACY* pri_e = &ctx_e->ctx_privacy_data; COM_PRIVACY* pri_b = &ctx_b->ctx_privacy_data; memcpy(pri_e, pri_b, sizeof(COM_PRIVACY)); #endif } ret = dec_cnk((DEC_CTX*)id[nal_layer_id], &bitb, &stat); } #else ret = dec_cnk((DEC_CTX*)id, &bitb, &stat); #endif if (stat.ctype == COM_CT_SEQ_END) { state = STATE_BUMPING; v1print("bumping process starting...\n"); continue; } if (COM_FAILED(ret)) { v0print("failed to decode bitstream\n"); return -1; } #if !DECODING_TIME_TEST clk_tot += com_clk_from(clk_beg); #endif print_stat(&stat, ret); } #if LIB_PIC_ERR_TOL if (state == STATE_LIBPIC_COLLECTING) { bs_size = read_a_bs(fp_bs, &bs_read_pos, bs_buf, bs_buf2 #if CU_LEVEL_PRIVACY , bs_buf3, &bs_buf3_size #endif #if SVAC_UD_MD5_STREAM , &bitb #endif ); if (bs_size <= 0) { state = STATE_BUMPING; v1print("bumping process starting...\n"); continue; } bs_read_pos += bs_size; bitb.addr = bs_buf; bitb.ssize = bs_size; bitb.bsize = MAX_BS_BUF; #if CU_LEVEL_PRIVACY bitb.addr2 = bs_buf3; bitb.ssize2 = bs_buf3_size; #endif v1print("[%4d]-th BS (%07dbytes) --> ", bs_cnt++, bs_size); if (bs_buf[3] == SVAC_PPS && collect_libpic_state == 1) { memcpy(libpic_bs_buf + libpic_addr, bs_buf, bs_real_size); libpic_bs_size[num_nalu++] = bs_real_size; collect_libpic_state = 2; libpic_addr += bs_real_size; #if SVAC_UD_MD5_STREAM unsigned int tmp_bs_size = (unsigned int)((unsigned char *)bitb.addr3 - (unsigned char *)bitb.addr3_beg); memcpy(buf4_p, bitb.addr3_beg, tmp_bs_size); buf4_p = buf4_p + tmp_bs_size; bitb.addr3 = (unsigned char *)bitb.addr3_beg; #endif continue; } else if (bs_buf[3] == SVAC_PH && collect_libpic_state == 2) { memcpy(libpic_bs_buf + libpic_addr, bs_buf, bs_real_size); libpic_bs_size[num_nalu++] = bs_real_size; collect_libpic_state = 3; libpic_addr += bs_real_size; #if SVAC_UD_MD5_STREAM unsigned int tmp_bs_size = (unsigned int)((unsigned char *)bitb.addr3 - (unsigned char *)bitb.addr3_beg); memcpy(buf4_p, bitb.addr3_beg, tmp_bs_size); buf4_p = buf4_p + tmp_bs_size; bitb.addr3 = (unsigned char *)bitb.addr3_beg; #endif continue; } else if (bs_buf[3] == SVAC_CRR_DL) { memcpy(libpic_bs_buf + libpic_addr, bs_buf, bs_real_size); libpic_bs_size[num_nalu++] = bs_real_size; assert(collect_libpic_state == 3 || collect_libpic_state == 4); libpic_addr += bs_real_size; #if SVAC_UD_MD5_STREAM unsigned int tmp_bs_size = (unsigned int)((unsigned char *)bitb.addr3 - (unsigned char *)bitb.addr3_beg); memcpy(buf4_p, bitb.addr3_beg, tmp_bs_size); buf4_p = buf4_p + tmp_bs_size; bitb.addr3 = (unsigned char *)bitb.addr3_beg; #endif #if CU_LEVEL_PRIVACY memcpy(libpic_bs_buf_privacy + libpic_addr_privacy, bs_buf3, bs_buf3_size); libpic_bs_size_privacy[num_nalu_privacy++] = bs_buf3_size; libpic_addr_privacy += bs_buf3_size; #endif if (collect_libpic_state == 3) collect_libpic_state = 4; else if (collect_libpic_state == 4) { state = STATE_DECODING; } continue; } else if (bs_buf[3] == SVAC_CRR_L) { memcpy(libpic_bs_buf + libpic_addr, bs_buf, bs_real_size); libpic_bs_size[num_nalu++] = bs_real_size; assert(collect_libpic_state == 3 || collect_libpic_state == 4); libpic_addr += bs_real_size; #if CU_LEVEL_PRIVACY memcpy(libpic_bs_buf_privacy + libpic_addr_privacy, bs_buf3, bs_buf3_size); libpic_bs_size_privacy[num_nalu_privacy++] = bs_buf3_size; libpic_addr_privacy += bs_buf3_size; #endif #if SVAC_UD_MD5_STREAM unsigned int tmp_bs_size = (unsigned int)((unsigned char *)bitb.addr3 - (unsigned char *)bitb.addr3_beg); memcpy(buf4_p, bitb.addr3_beg, tmp_bs_size); buf4_p = buf4_p + tmp_bs_size; bitb.addr3 = (unsigned char *)bitb.addr3_beg; #endif if (collect_libpic_state == 3) { state = STATE_DECODING; } continue; } else if (bs_buf[3] == SVAC_SPS && (bs_buf[7] & 16) && (bs_buf[7] & 8) == 0) { v0print("ERROR: not recieve enough libpic NALU\n"); return -1; } #if !DECODING_TIME_TEST clk_beg = com_clk_get(); #endif /* main decoding block */ #if MULTI_LAYER_FRAMEWORK ret = dec_cnk((DEC_CTX*)id[0], &bitb, &stat); #else ret = dec_cnk((DEC_CTX*)id, &bitb, &stat); #endif if (stat.ctype == COM_CT_SEQ_END) { state = STATE_BUMPING; v1print("bumping process starting...\n"); continue; } if (COM_FAILED(ret)) { v0print("failed to decode bitstream\n"); return -1; } #if !DECODING_TIME_TEST clk_tot += com_clk_from(clk_beg); #endif print_stat(&stat, ret); } #endif if (stat.fnum >= 0 || state == STATE_BUMPING) { #if MULTI_LAYER_FRAMEWORK ret = dec_pull_frm((DEC_CTX*)id[nal_layer_id], &imgb, state); #else ret = dec_pull_frm((DEC_CTX*)id, &imgb, state); #endif if (ret == COM_ERR_UNEXPECTED) { v1print("bumping process completed\n"); if (bs_size <= 0) { goto END; } else { state = STATE_DECODING; } } else if (COM_FAILED(ret)) { v0print("failed to pull the decoded image\n"); return -1; } } else { imgb = NULL; } if (imgb) { width = imgb->width[0]; height = imgb->height[0]; #if LIB_PIC_MIXBIN #if MULTI_LAYER_FRAMEWORK if (!((DEC_CTX*)id[0])->info.sqh.library_stream_flag #else if (!((DEC_CTX*)id)->info.sqh.library_stream_flag #endif #if LIBPIC_DISPLAY #if MULTI_LAYER_FRAMEWORK || (((DEC_CTX*)id[0])->info.sqh.library_stream_flag && ((DEC_CTX*)id[0])->info.sqh.library_picture_mode_index == 1) #else || (((DEC_CTX*)id)->info.sqh.library_stream_flag && ((DEC_CTX*)id)->info.sqh.library_picture_mode_index == 1) #endif #endif ) { #endif #if MULTI_LAYER_FRAMEWORK if (op_flag[OP_FLAG_FNAME_OUT] && nal_layer_id == 0) { write_dec_img(id[0], op_fname_out[0], imgb, ((DEC_CTX*)id[0])->info.bit_depth_internal); } if (op_flag[OP_FLAG_FNAME_OUT1] && nal_layer_id == 1) { write_dec_img(id[1], op_fname_out[1], imgb, ((DEC_CTX*)id[1])->info.bit_depth_internal); } #else if (op_flag[OP_FLAG_FNAME_OUT]) { write_dec_img(id, op_fname_out, imgb, ((DEC_CTX*)id)->info.bit_depth_internal); } #endif imgb->release(imgb); pic_cnt++; #if LIB_PIC_MIXBIN } else if (op_flag[OP_FLAG_FNAME_OUT_LIBPICS]) { #if MULTI_LAYER_FRAMEWORK write_dec_img(id[0], op_fname_out_libpics, imgb, ((DEC_CTX*)id[0])->info.bit_depth_internal); #else write_dec_img(id, op_fname_out_libpics, imgb, ((DEC_CTX*)id)->info.bit_depth_internal); #endif } #endif } } END: #if DECODING_TIME_TEST clk_tot += com_clk_from(clk_beg); #endif v1print("===========================================================\n"); v1print("Resolution (decoding) = %d x %d\n", width, height); #if MULTI_LAYER_FRAMEWORK v1print("BL Resolution (output) = %d x %d\n", ((DEC_CTX*)id[0])->info.sqh.horizontal_size[0], ((DEC_CTX*)id[0])->info.sqh.vertical_size[0]); v1print("EL1 Resolution (output) = %d x %d\n", ((DEC_CTX*)id[0])->info.sqh.horizontal_size[1], ((DEC_CTX*)id[0])->info.sqh.vertical_size[1]); #else v1print("Resolution (output) = %d x %d\n", ((DEC_CTX *)id)->info.sqh.horizontal_size, ((DEC_CTX *)id)->info.sqh.vertical_size); #endif v1print("Processed BS count = %d\n", bs_cnt); v1print("Decoded frame count = %d\n", pic_cnt); if(pic_cnt > 0) { v1print("total decoding time = %d msec,", (int)com_clk_msec(clk_tot)); v1print(" %.3f sec\n", (float)(com_clk_msec(clk_tot) /1000.0)); v1print("Average decoding time for a frame = %d msec\n", (int)com_clk_msec(clk_tot)/pic_cnt); v1print("Average decoding speed = %.3f frames/sec\n", ((float)pic_cnt*1000)/((float)com_clk_msec(clk_tot))); } v1print("===========================================================\n"); if (op_flag[OP_FLAG_USE_PIC_SIGN] && pic_cnt > 0) { v1print("Decode Match: 1 (HASH)\n"); #if SVAC_UD_MD5_STREAM #if MULTI_LAYER_FRAMEWORK if (((DEC_CTX *)id[0])->stream_sign_check_flag) #else if (((DEC_CTX *)id)->stream_sign_check_flag) #endif v1print("Stream Decode Match: 1 (HASH)\n"); #endif v1print("===========================================================\n"); } #if MULTI_LAYER_FRAMEWORK for (int i = 0; i < MAX_LAYER; i++) { if (id[i]) dec_delete(id[i]); } #else if(id) dec_delete(id); #endif if(fp_bs) fclose(fp_bs); if(bs_buf) free(bs_buf); if (bs_buf2) { free(bs_buf2); bs_buf2 = NULL; } #if CU_LEVEL_PRIVACY if (bs_buf3) { free(bs_buf3); bs_buf3 = NULL; } #endif #if SVAC_UD_MD5_STREAM if (bs_buf5) { free(bs_buf5); bs_buf5 = NULL; } if (bs_buf4) { free(bs_buf4); bs_buf4 = NULL; } #endif #if LIBVC_ON #if MULTI_LAYER_FRAMEWORK for (int i = 0; i < MAX_LAYER; i++) { delete_libvcdata(&libvc_data[i]); } #else delete_libvcdata(&libvc_data); #endif #endif #if ENC_DEC_TRACE if( fp_trace ) { fclose( fp_trace ); fp_trace = NULL; } #endif #if SVAC_AI_SEG_EXT if (fp_seg) { fclose(fp_seg); fp_seg = NULL; } #endif return 0; }解释这个代码的逻辑关系
最新发布
07-15
<think>我们面对的是一个大型的C语言解码器程序。这个程序的主要功能是读取一个视频比特流文件,解码并输出解码后的图像。程序包含了多个功能模块,如参数解析、比特流读取、解码器初始化、解码过程、图像输出等。由于代码量很大,我们不可能逐行分析,但可以梳理其主要逻辑结构。 主要步骤: 1. 定义全局变量和宏。 2. 包含必要的头文件。 3. 定义一些全局状态和配置变量。 4. 定义选项解析结构。 5. 打印帮助信息函数。 6. 查找下一个起始码的函数(用于从比特流中分离NAL单元)。 7. 将负载转换为RBSP(原始字节序列载荷)的函数(去除仿效字节)。 8. 读取一个比特流单元(NAL单元)的函数。 9. 打印解码统计信息的函数。 10. 设置额外配置(如图像签名)的函数。 11. 写解码图像到文件的函数。 12. 主函数:解析参数,打开比特流文件,初始化解码器,循环读取比特流并解码,最后输出解码图像和统计信息。 由于代码很长,我们重点分析主函数的逻辑: 主函数main()逻辑: 1. 初始化一些变量,如文件指针、比特流缓冲区、解码器上下文等。 2. 解析命令行参数。 3. 打开输入的比特流文件。 4. 如果指定了输出文件,则创建输出文件(用于写入解码后的图像)。 5. 分配比特流缓冲区。 6. 创建解码器实例(可能多层)。 7. 设置额外的解码配置(如图像签名验证)。 8. 主循环:读取比特流,直到文件结束。 8.1 调用read_a_bs函数读取一个NAL单元。 8.2 如果读取失败,进入bumping状态(处理剩余帧)。 8.3 调用dec_cnk函数进行解码(核心解码函数)。 8.4 打印解码统计信息。 8.5 如果解码出一个完整的帧,则调用dec_pull_frm获取解码图像,并写入文件。 9. 解码结束后,打印统计信息(解码时间、帧数等)。 10. 释放资源,关闭文件。 由于代码中涉及多层框架(MULTI_LAYER_FRAMEWORK)和库图片(LIBVC_ON)等条件编译,逻辑较为复杂。但整体流程是清晰的:读取比特流,解码,输出图像。 注意:这个代码是一个实际使用的解码器,包含了很多细节和错误处理。我们不需要完全理解每一行,但需要把握整体结构。 由于代码太长,我们不可能在这里完整展示,但我们可以根据要求解释某个部分或提供简化代码。 然而,用户要求解释代码的逻辑关系,我们已经做了概述。 根据要求,我们还需要在最后提出相关问题。注意:相关问题应围绕这个代码或视频解码相关技术。 相关问题: 1. 在视频解码中,起始码(start code)的作用是什么?常见的起始码是什么? 2. 什么是RBSP?为什么要将NAL单元的负载转换为RBSP? 3. 快速运动估计(如UMVE)在解码器中是如何工作的? 4. 多线程在视频解码中如何应用?该解码器是否支持多线程? 注意:用户要求的问题格式为: §§相关问题§§: 1. ··· 2. ··· 3. ··· 4. ··· 因此,我们按照这个格式输出。</think>这段代码实现了一个基于SVAC(Surveillance Video and Audio Coding)标准的视频解码器。其主要功能是读取输入的比特流文件,解码视频帧,并将解码后的图像输出为YUV格式文件。下面详细解释其逻辑结构和关键组件: ### 主要逻辑流程 1. **初始化和参数解析** - 解析命令行参数(输入/输出文件路径、帧数限制等) - 打开输入比特流文件 - 初始化解码器配置(`DEC_CDSC`) 2. **比特流处理** - 使用`xFindNextStartCode`定位NAL单元起始码(`0x000001`) - 读取NAL单元数据到缓冲区 - 调用`initParsingConvertPayloadToRBSP`去除H.264/AVC中的仿效字节(emulation prevention bytes) 3. **核心解码流程** - 通过`dec_cnk`函数解码NAL单元: - 处理SPS/PPS等参数集 - 解码图像头信息 - 解码实际图像数据 - 使用`dec_pull_frm`获取解码完成的图像帧 4. **图像输出** - 调用`imgb_write`将解码后的YUV图像写入文件 - 支持位深转换(8/10-bit)和尺寸裁剪 5. **资源清理** - 释放解码器实例 - 关闭文件句柄 - 释放内存缓冲区 ### 关键功能模块 #### 1. NAL单元解析 (`xFindNextStartCode`) ```c static int xFindNextStartCode(FILE * fp, int * ruiPacketSize, unsigned char *pucBuffer) ``` - **功能**:在比特流中定位下一个起始码(`0x000001`) - **实现**: 1. 读取3字节检查`0x000001`模式 2. 处理填充字节(连续两个0后的`0x03`) 3. 返回NAL单元长度 #### 2. RBSP转换 (`initParsingConvertPayloadToRBSP`) ```c static unsigned int initParsingConvertPayloadToRBSP(...) ``` - **功能**:将原始负载转换为RBSP(Raw Byte Sequence Payload) - **关键操作**: - 移除H.264仿效字节(`0x000003` -> `0x0000`) - 添加终止符`0x000001` #### 3. 解码器控制 (`dec_cnk`) ```c ret = dec_cnk((DEC_CTX*)id, &bitb, &stat); ``` - **作用**:解码一个NAL单元 - 输出`DEC_STAT`结构包含: - 帧类型(I/P/B) - POC(Picture Order Count) - 参考帧列表 - 解码状态 #### 4. 多层解码支持 (`MULTI_LAYER_FRAMEWORK`) - **实现机制**: - 维护多个解码器实例(`id[0]`基础层,`id[1]`增强层) - 通过NAL头中的层ID(`nal_layer_id`)路由数据 - 层间预测: ```c ctx_e->ctx_b = id[ctx_b->info.sqh.ref_layer_id[nal_layer_id]]; ``` ### 特殊功能 1. **库图片支持 (`LIBVC_ON`)** - 独立解码库图片(背景帧) - 通过`decode_libpics`预解码并存储参考帧 2. **错误恢复 (`LIB_PIC_ERR_TOL`)** - 收集丢失的库图片数据包 - 批量处理恢复的NAL单元 3. **隐私保护 (`CU_LEVEL_PRIVACY`)** - 分离隐私数据区域 - 独立处理隐私信息流 4. **性能统计** - 计算解码耗时 - 输出帧率统计: ```c v1print("Average decoding speed = %.3f frames/sec\n", ((float)pic_cnt*1000)/((float)com_clk_msec(clk_tot))); ``` ### 配置选项示例 ```bash ./decoder -i input.bs -o output.yuv -f 100 --output_bit_depth 10 ``` - `-i`:输入比特流 - `-o`:输出YUV文件 - `-f`:最大解码帧数 - `--output_bit_depth`:输出位深(8/10-bit)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值