opencv(python)图像处理之九

本文介绍了OpenCV Python中的图像阈值处理技术,包括简单阈值化、自适应阈值化和最大类间方差阈值化。通过示例代码展示了如何实现图像的二值化、反阈值化以及自适应阈值处理,如高斯滤波后应用Otsu's和Riddler-Calvard方法进行阈值选择。

一、函数简介
1、threshold—图像简单阈值化处理
函数原型:threshold(src, thresh, maxval, type, dst=None)
src:图像矩阵
thresh:阈值
maxVal:像素最大值
type:阈值化类型
2、adaptiveThreshold—图像自适应阈值化处理
函数原型:adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C, dst=None)
src:图像矩阵
maxValue:像素最大值
adaptiveMethod:自适应方法
thresholdType:阈值化类型
blockSize:窗口尺寸
C:为一整数,减去该整数来对阈值进行微调
3、thresholding.otsu—图像最大类间方差阈值化处理
函数原型:thresholding.otsu(src)
src:图像矩阵
4、thresholding.rc—图像Riddler-Calvard阈值化处理
函数原型:thresholding.rc(src)
src:图像矩阵
二、实例演练
1、图像二值化及反转
代码如下:
#encoding:utf-8

#
#图像二值化及反转
#

import numpy as np
import cv2

image = cv2.imread("H:\\img\\coins.bmp")
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)#将图像转为灰色
blurred = cv2.GaussianBlur(image, (5, 5), 0)#高斯滤波
cv2.imshow("Image", image)#显示图像
(T, thresh) = cv2.threshold(blurred, 155, 255, cv2.THRESH_BINARY)#阈值化处理,阈值为:155
cv2.im

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值