一、函数简介
1、threshold—图像简单阈值化处理
函数原型:threshold(src, thresh, maxval, type, dst=None)
src:图像矩阵
thresh:阈值
maxVal:像素最大值
type:阈值化类型
2、adaptiveThreshold—图像自适应阈值化处理
函数原型:adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C, dst=None)
src:图像矩阵
maxValue:像素最大值
adaptiveMethod:自适应方法
thresholdType:阈值化类型
blockSize:窗口尺寸
C:为一整数,减去该整数来对阈值进行微调
3、thresholding.otsu—图像最大类间方差阈值化处理
函数原型:thresholding.otsu(src)
src:图像矩阵
4、thresholding.rc—图像Riddler-Calvard阈值化处理
函数原型:thresholding.rc(src)
src:图像矩阵
二、实例演练
1、图像二值化及反转
代码如下:
#encoding:utf-8
#
#图像二值化及反转
#
import numpy as np
import cv2
image = cv2.imread("H:\\img\\coins.bmp")
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)#将图像转为灰色
blurred = cv2.GaussianBlur(image, (5, 5), 0)#高斯滤波
cv2.imshow("Image", image)#显示图像
(T, thresh) = cv2.threshold(blurred, 155, 255, cv2.THRESH_BINARY)#阈值化处理,阈值为:155
cv2.im