2015-A Review  《Efficient Configuration Space Construction and Optimization for Motion Planning》

本文介绍了一种基于机器学习和几何学近似技术的新型配置空间构建算法,该算法能够有效解决高维配置空间中的运动规划问题。通过使用GPU加速优化计算,实现了机器人实时规划的需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2015年 发表在《Engineering》
运动规划的高效配置空间构建与优化

 描述机器人的配置空间有两项重大挑战:
1.如何计算高维配置空间的近似表达
2.如何在高维配置空间内高效执行运动规划查询

作者基于机器学习和几何学近似技术,提出新的配置空间构建算法。还提出了基于GPU的算法。

在配置空间(C空间)内,可以将机器人绘制成一个点,从而运动规划问题分为两步
1)配置空间的表达
2)根据计算的表达进行优化操作

下图分别为配置空间和工作空间



基于C空间的运动规划流水线,主要面临两个问题
1)计算配置空间的近似表达比较困难
2)机器人需要实时规划,但是对配置空间的计算表达进行优化的耗时较长

本文作者提出将配置空间构建问题转化为机器学习问题,并提出了利用GPU来加速配置空间内的优化计算

C空间分为无碰撞空间Cfree和碰撞空间Cobs,Cobs是闭集,Ccont表示其边界


前人对配置空间的构建主要分为两种方法:几何学和拓扑学
几何学方法计算比较复杂
拓扑学方法在窄通道应用不太理想



运动规划问题可呈现为C空间内的优化约束问题
应满足如下约束条件:
1)轨迹应在Cfree内
2)轨迹应切实可行

目前基于C空间,
以优化为基础的运动规划算法有CHOMP、TrajOPT等等
以搜索为基础的算法有Anytime A*
对于高自由度机器人,大多数以随机算法为基础,如PRM和RRT

使用机器学习方法表达配置空间,首先在配置空间内生成样本,然后使用这些样本来估算接触空间Ccont。其方法便是对表面进行分离,表面能分离有碰撞和无碰撞的样本,使用SVM分类法来计算分离表面。

离线学习算法,如下图



本文选择PRM算法作为并行规划的基本方法,因为PRM最适合利用GPU的多核与数据并行。



总结:
利用机器学习分类器,对配置空间取样,并估算接触空间。
其中,使用主动学习技术选择样本。
最后,在GPU上进行规划。

Satellite maps have become an essential tool for various applications, including navigation, agriculture, urban planning, and disaster response. One of the critical challenges in using satellite maps is path planning, which involves finding the optimal path between two locations while considering various constraints such as terrain, obstacles, and weather conditions. Over the years, several path planning algorithms have been developed for satellite maps, and this literature review aims to provide an overview of the research in this field. One of the earliest and most popular path planning algorithms for satellite maps is Dijkstra's algorithm. This algorithm uses a graph-based approach to find the shortest path between two points while avoiding obstacles. However, Dijkstra's algorithm has limitations when dealing with large-scale maps or dynamic environments, and several variants have been proposed to overcome these limitations. For example, A* algorithm is an extension of Dijkstra's algorithm that uses heuristics to reduce the search space and improve efficiency. Another popular path planning algorithm for satellite maps is the Rapidly-exploring Random Tree (RRT) algorithm. RRT is a probabilistic algorithm that generates a tree of random samples and connects them to form a path. RRT has been shown to be effective in dealing with complex environments and non-holonomic constraints. However, RRT has limitations when dealing with dynamic obstacles or multi-objective optimization problems. In recent years, machine learning techniques have been applied to path planning for satellite maps. For example, Deep Reinforcement Learning (DRL) algorithms have been used to learn optimal paths in complex and dynamic environments. DRL algorithms use a combination of deep neural networks and reinforcement learning to learn policies that maximize a reward function. These algorithms have shown promising results in various applications, including autonomous navigation and robotics. Another recent development in path planning for satellite maps is the integration of satellite data with other data sources such as social media and sensor data. This integration allows for more accurate and real-time path planning, which is essential in disaster response and emergency situations. In conclusion, path planning for satellite maps is a challenging and evolving field, and several algorithms and techniques have been proposed over the years. While graph-based algorithms and RRT remain popular choices, machine learning techniques such as DRL have shown promising results. The integration of satellite data with other data sources is also a promising direction for future research.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WX Chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值