1. 问题概述
tsp问题的数学模型如下:

1.1 给定upbound的Christofides方法
这是可以给出上界的一个方法,可以证明构造出的路线不超过最优路线的1.5倍。步骤为:
1)构造MST(最小生成树)
2)将里面的奇点连接起来构成欧拉回路称为完美匹配。Edmonds给出了多项式时间内构造最小代价完美匹配的方法,其长度不超过最优解的1.5倍。

证明方法也很直观,奇点最短路径可以拆分成两条完美匹配,其中总有一条的长度≤\le≤最优奇点路径长度/2≤\le≤最优完整路径长度/2

3)按欧拉回路顺序逐个扫描点,跳过重复经过的点,即可构造一条完整的路径。

下面是blossom算法的使用示例:
using BlossomV,TravelingSalesmanHeuristics,TSPLIB,Distances,DataStructures
tsp = readTSP("vlsi/bcl380.tsp"); # bays29
N = tsp.dimension
distmat = [euclidean(tsp.nodes[i,:],tsp.nodes[j,:]) for i in 1:N, j in 1:N]
mst = TravelingSalesmanHeuristics.minspantree(distmat)[1]
x = counter(cat([m[1] for m in mst],[m[2] for m in mst],dims=1))
odds = []
for xi in x
if xi[2]%2==1
append!(odds,xi[1])
end
end
mat = Matching(Float64, length(odds))
for i in 1:length(odds)
for j in 1:i-1
add_edge(mat,i-1,j-1,distmat[odds[i],odds[j]])
end
end
solve(mat)
using PyPlot
tree = mst
PyPlot.scatter(tsp.nodes[:,1],tsp.nodes[:,2],color="black",s=10)
for i in 1:length(tree)
l = tsp.nodes[[tree[i][1],tree[i][2]],:]
PyPlot.plot(l[:,1], l[:,2], color="black",linewidth = 1)
end
for i in 1:length(odds)
j = get_match(mat,i-1)+1
if j>i
l = tsp.nodes[[odds[i],odds[j]],:]
PyPlot.plot(l[:,1],l[:,2],color="r",linewidth = 0.5,linestyle="--")
end
end

1.2. 给定lowerbound的松弛问题
首先看一个例子:

我们定义xijx_{ij}xij为边ij是否在路径上。根据TSP问题的要求,每个点只能路过一次,因此每个点连着两条边,有:

1.3 MIP求解方法
可以参考TravelingSalesmanExact 包:
using TravelingSalesmanExact, GLPK
tsp = readTSPLIB(:att48)
cities = [tsp.nodes[i,:] for i in 1:tsp.dimension];
@time tour, cost = get_optimal_tour(cities, GLPK.Optimizer)
我们自己实现的代码如下。如果我们能够调用MIP求解器,那么我们可以使用combination包把所有可能的子集罗列出来求解。当然也可以松弛subtour约束后使用行生成求解:
using TSPLIB,JuMP, GLPK, Distances
tsp = readTSP("25.tsp")
N = tsp.dimension
distmat = [euclidean(tsp.nodes[i,:],tsp.nodes[j,:]) for i in 1:N, j in 1:N]
m = Model(GLPK.Optimizer)
@variable(m, x[1:N,1:N], Bin)
@objective(m, Min, sum(x[i,j]*distmat[i,j] for i=1:N,j=1:N))
for i=1:N
@constraint(m, x[i,i] == 0)
@constraint(m, sum(x[i,1:N]) == 1)
end
for j=1:N
@constraint(m, sum(x[1:N,j]) == 1)
end
for f=1:N, t=1:N
@constraint(m, x[f,t]+x[t,f] <= 1)
end
optimize!(m)
结果如下:

接下来不断增加subtour约束重新求解
function is_tsp_solved(m)
g = JuMP.value.(x)
N = size(g,1)
path = Int[]
push!(path,1)
while true
v, idx = findmax(g[path[end],:])
if idx == path[1]
break
else
push!(path,idx)
end
end
n = length(path)
if n < N
@constraint(m,sum(x[path,path])<=n-1)
return false
end
return true
end
while !is_tsp_solved(m)
optimize!(m)
end
最终结果如下

整数规划还是比较费时间的,att48用了177s才求出最优解。下面进行优化,每次同时把所有的subtour都添加进来。我们修改后的代码如下:
using JuMP, GLPK, Distances
function get_cycles(perm_matrix)
N = size(perm_matrix, 1)
remaining_inds = Set(1:N)
cycles = Vector{Int}[]
while length(remaining_inds) > 0
cycle = find_cycle(perm_matrix, first(remaining_inds))
push!(cycles, cycle)
setdiff!(remaining_inds, cycle)
end
return cycles
end
function find_cycle(perm_matrix, starting_ind = 1)
cycle = [starting_ind]
prev_ind = ind = starting_ind
while true
next_ind = findfirst(>(0.5), @views(perm_matrix[ind, 1:prev_ind-1]))
if isnothing(next_ind)
next_ind = findfirst(>(0.5), @views(perm_matrix[ind, prev_ind+1:end])) +
prev_ind
end
next_ind == starting_ind && break
push!(cycle, next_ind)
prev_ind, ind = ind, next_ind
end
return cycle
end
function is_tsp_solved(m,x)
cycles = get_cycles(JuMP.value.(x))
if size(cycles,1)>1
for cycle in cycles
@constraint(m,sum(x[cycle,cycle])<=2*size(cycle,1)-2)
end
return false
end
return true
end
function solve_tsp_with_mip(tsp)
N = tsp.dimension
distmat = [euclidean(tsp.nodes[i,:],tsp.nodes[j,:]) for i in 1:N, j in 1:N]
m = Model(GLPK.Optimizer)
@variable(m, x[1:N,1:N], Symmetric, Bin)
@objective(m, Min, sum(x[i,j]*distmat[i,j] for i=1:N,j=1:i))
for i=1:N
@constraint(m, x[i,i] == 0)
@constraint(m, sum(x[i,:]) == 2)
end
optimize!(m)
while !is_tsp_solved(m,x)
optimize!(m)
end
return JuMP.value.(x), objective_value(m)
end
@time solve_tsp_with_mip(tsp)
1.4 BFF建模方法
给路径上的边定义一个数,第一条边为1,第二条边为2,……,并且定义方向,则除了depot外每个点的所有边加起来为1,设计模型如下:
using DataFrames, Plots, LinearAlgebra, Random
using TSPLIB,LKH,Distances,PyPlot
tsp=readTSPLIB(:att48)
c = tsp.dimension
distance = 1000;
xpos = tsp.nodes[:,1]; ypos = tsp.nodes[:,2];
Nodes = DataFrames.DataFrame(;k = 1:c,x = xpos,y = ypos,);
Distance = zeros(Int(c*(c-1)/2),3)
global cont = 1
for i = 1:size(Nodes,1)
for j = i+1:size(Nodes,1)
global Distance[cont,:] =
[i,j,floor(0.5+norm([(Nodes.x[i,1]-Nodes.x[j,1]),(Nodes.y[i,1]-Nodes.y[j,1])]))]
global cont = cont+1;
end
end
L = size(Distance,1)
branches = DataFrames.DataFrame(; k = Distance[:,1],m = Distance[:,2], lkm = Distance[:,3],)
# 添加model求解代码
using JuMP, HiGHS
b = size(branches, 1) # 边的个数
A = zeros(c, b) # 点是否为变的起点或者终点
for l = 1:b
k = Int(branches.k[l, 1]);
m = Int(branches.m[l, 1])
A[k, l] = 1; A[m, l] = -1;
end
Branch = 1:b; Cities = 1:c;
model = Model(HiGHS.Optimizer)
set_silent(model)
sd = ones(c, 1); sd[1, 1] = 0; smax = zeros(c, 1); smax[1, 1] = c; flmax = c;
@variable(model, x[l in Branch], Bin) # 是否包含边
@variable(model, f[l in Branch]) # 边上的流量
@variable(model, s[k in Cities] >= 0)
@objective(model, Min, sum(branches.lkm[l, 1] * x[l] for l in Branch)) # 总距离最短
for k in Cities
@constraint(model, s[k] <= smax[k])
@constraint(model, sum(abs(A[k, l]) * x[l] for l in Branch) == 2) # 每个点包含2个边
@constraint(model, s[k] - sd[k] == sum(-A[k, l] * f[l] for l in Branch)) # depot的流为47(因为有一个回来的48),其他点的流为1
end
for l in Branch
@constraint(model, -flmax * x[l] <= f[l]) # 只有有边才能有流
@constraint(model, f[l] <= flmax * x[l])
end
@constraint(model, sum(x[i] for i in Branch) == c) # 总共有c条边
@time JuMP.optimize!(model)
@show objective_value(model)
# 添加可视化代码
global sol = [value(x[l]) for l in Branch];
global sou = [value(s[k]) for k in Cities];
global flow = [value(f[l]) for l in Branch];
for l = 1:size(branches, 1)
if sol[l, 1] >= 1/2
local index1 = findall(x -> x == branches.k[l, 1], Nodes.k)
local index2 = findall(x -> x == branches.m[l, 1], Nodes.k)
local x = [Nodes.x[index1, 1]; Nodes.x[index2, 1]];
local y = [Nodes.y[index1, 1]; Nodes.y[index2, 1]];
plot!(x, y, linewidth=3, label="", linecolor=:black)
end
end
scatter!(Nodes.x, Nodes.y, label="", mc=:blue, ms=5, ma=2)
1.5 BFF加速
这里做一些模型优化,首先松弛调depot的约束,其次每个点只考虑附近的K个点,模型如下:
using DataFrames, Random, TSPLIB,Distances, PyPlot, ProgressBars
plt.figure(figsize=(20, 10))
function plot_tree(tsp,mst)
s = tsp.nodes;scatter(s[:,1],s[:,2]);for m in mst;plot(s[[m...],1],s[[m...],2],c="b");end #for p in 1:tsp.dimension;text(s[p,1],s[p,2],p);end;
end
function greedyConstruct(dist)
path = [1];for _ in 1:size(dist)[1];c_dist = dist[path[end],:];c_dist[path].=MaxNum;next_id = findmin(c_dist)[2];push!(path,next_id);end
return path
end
neighbour_num = 15
MaxNum = 1000000
tsp=readTSPLIB(:d493)
println("Generate branches")
c = tsp.dimension
xpos = tsp.nodes[:,1]; ypos = tsp.nodes[:,2];
Nodes = DataFrames.DataFrame(;k = 1:c,x = xpos,y = ypos,);
branch_list = [Set() for i in 1:c]
for i in tqdm(1:c)
dist = [floor.(0.5+euclidean(tsp.nodes[i,:],tsp.nodes[j,:])) for j in 1:c];dist[i] = MaxNum
for j in partialsortperm(dist, 1:neighbour_num)
if i<j
push!(branch_list[i],(i,j,dist[j]))
else
push!(branch_list[j],(j,i,dist[j]))
end
end
end
println("Generate greedy route")
dist_matrix = [floor.(0.5+euclidean(tsp.nodes[i,:],tsp.nodes[j,:])) for i in 1:tsp.dimension,j in 1:tsp.dimension];
path = greedyConstruct(dist_matrix);
for idx in tqdm(1:length(path))
i = path[idx]
j = path[idx==length(path) ? 1 : idx+1]
if i<j
push!(branch_list[i],(i,j,dist_matrix[i,j]))
else
push!(branch_list[j],(j,i,dist_matrix[i,j]))

文章介绍了旅行商问题(TSP)的解决方法,包括Christofides算法构建的上界和使用Blossom算法的示例,以及通过松弛问题和子回路约束寻找下界。此外,讨论了如何通过添加约束获取整数解,如polyhedralcombinatorics和分支定界法,并提到了PQ树和shrinking在寻找subtourconstraints中的应用。
最低0.47元/天 解锁文章
5266

被折叠的 条评论
为什么被折叠?



