机器学习day4-朴素贝叶斯分类和决策树

八朴素贝叶斯分类

1贝叶斯分类理论

选择具有最高概率的决策

2条件概率

在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。

𝑃(𝐴|𝐵)=𝑃(B|A)𝑃(𝐴)/𝑃(𝐵)

3全概率公式

𝑃(𝐵)=𝑃(𝐵|𝐴)𝑃(𝐴)+𝑃(𝐵|𝐴′)𝑃(𝐴′)

那么条件概率的另一种写法为:

$$
P(A|B)=\frac{P(B|A)P(A)}{P(B|A)P(A)+P(B|A^,)P(A^,)}
$$

具体可以参考:

一文搞懂贝叶斯定理(原理篇) - Blogs - 廖雪峰的官方网站 (liaoxuefeng.com)

条件概率,全概率公式和贝叶斯公式-优快云博客

4贝叶斯推断


P(A|B)=\frac{P(B|A)P(A)}{P(B)}
 

P(A):"先验概率"(Prior probability),即在B事件发生之前,我们对A事件概率的一个判断。

P(A|B:"后验概率"(Posterior probability),即在B事件发生之后,我们对A事件概率的重新评估。

P(B|A)/P(B):"可能性函数"(Likelyhood),这是一个调整因子,使得预估概率更接近真实概率。

此公式可以理解为:后验概率 = 先验概率x调整因子

即通过不断的实验结果去调整先验概率,从而得到更接近事实的后验概率。

5朴素贝叶斯推断

条件相互独立的贝叶斯推断


P(a|X) = \frac{P(X|a)P(a)}{P(X)}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值