英伟达再出手,新型混合架构模型问世,两大创新实现53.6倍吞吐提速

又一个真正轻量、快速、强悍的大语言模型闪亮登场!

Transformer 架构对计算和内存的巨大需求使得大模型效率的提升成为一大难题。为应对这一挑战,研究者们投入了大量精力来设计更高效的 LM 架构。

与此同时,大量工作致力于构建混合模型,将全注意力和线性注意力相结合,以在准确性和效率之间取得平衡。虽然这些模型比全注意力架构具有更高的效率,但其准确性仍明显落后于 SOTA 全注意力模型。

近日,来自英伟达的研究者提出了一种新的混合架构语言模型新系列 ——Jet-Nemotron。其在达到 SOTA 全注意力模型精度的同时,还具备卓越的效率。

具体来说,2B 版本的 Jet-Nemotron 性能就能赶超 Qwen3、Qwen2.5、Gemma3 和 Llama3.2 等最 SOTA 开源全注意力语言模型,同时实现了显著的效率提升。在 H100 GPU 上,其生成吞吐量实现了高达 53.6 倍的加速(上下文长度为 256K,最大 batch size)。

此外,在 MMLU 和 MMLU-Pro 基准上,Jet-Nemotron 的准确率也超过了近期一些先进的 MoE 全注意力模型(如 DeepSeek-V3-Small 和 Moonlight),尽管这些模型的参数规模更大。

图片

  • 论文标题:Jet-Nemotron: Efficient Language Model with Post Neural Architecture Search

  • 论文地址:https://www.arxiv.org/pdf/2508.15884

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值