Low-shot Visual Recognition by Shrinking and Hallucinating Features

本文介绍了一种少样本学习框架,包含三个阶段:学习者由特征提取器和多类分类器组成;第一训练阶段(表示学习),从大量基础类别中学习特征表达;第二训练阶段(少样本学习),学习区分新类别;测试阶段,在未见过的测试图像上预测标签。核心在于通过类比转换生成新例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3个组成

It employs a learner, two training phases, and one testing phase.

1. learner

The learner is assumed to be composed of a feature extractor and a multi-class classifier.

2. traing phased one (representation learning)

During representation learning (training phase one), the
learner receives a fixed set of base categories CbaseC_{base}Cbase, and a dataset D containing a large number of examples for each category in Cbase. The learner uses D to set the parameters of its feature extractor.

产生新的类别

Any two examples z1 and z2 belonging to the same category represent a plausible transformation. Then, given a novel category example x, we want to apply to x the transformation that sent z1 to z2. That is, we want to complete the transformation “analogy” z1 : z2 :: x : ?.

We do this by training a function G that takes as input the concatenated feature vectors of the three examples [φ(x), φ(z1), φ(z2)].G是MLP

3. second phase (low-shot learning)

the learner is given a set of categories ClC_lCl that it must learn to distinguish. ClC_lCl = CbaseC_{base}Cbase ∪\cup CnovelC_{novel}Cnovel is a mix of base categories Cbase, and unseen novel categories Cnovel.
对于CnovelC_{novel}Cnovel,仅仅有k-shot

4.testing phase

the learnt model predicts labels from the combined label space ClC_lCl = CbaseC_{base}Cbase ∪\cup CnovelC_{novel}Cnovel on a set of previously unseen test images.

模型(Learning to generate new examples)

核心:在这里插入图片描述,通过z1:z2,类比x:?.

利用D训练G, 为用于类比的2组双胞胎。预测结果为:在这里插入图片描述。损失函数在这里插入图片描述。与上文中的特征表达误差与分类误差对应。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值