【Python机器学习】密度聚类DBSCAN、OPTICS的讲解及实战演示(附源码 超详细)

本文介绍了划分聚类、密度聚类和模型聚类三种聚类思路,重点讲解了密度聚类中的DBSCAN和OPTICS算法。DBSCAN通过核心点、边界点和噪声点的概念进行聚类,而OPTICS则引入可达距离解决确定eps参数值的问题。内容包括两种算法的原理、参数敏感性及实例展示,展示了不同参数下聚类结果的变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

划分聚类、密度聚类和模型聚类是比较有代表性的三种聚类思路

1:划分聚类

划分(Partitioning)聚类是基于距离的,它的基本思想是使簇内的点距离尽量近、簇间的点距离尽量远。k-means算法就属于划分聚类。划分聚类适合凸样本点集合的分簇。

2:密度聚类

密度(Density)聚类是基于所谓的密度进行分簇

密度聚类的思想是当邻域的密度达到指定阈值时,就将邻域内的样本点合并到本簇内,如果本簇内所有样本点的邻域密度都达不到指定阈值,则本簇划分完毕,进行下一个簇的划分。

 DBSCAN

DBSCAN算法将所有样本点分为核心点、边界点和噪声点,如灰色点、白色点和黑色点所示

核心点:在指定大小的邻域内有不少于指定数量的点。指定大小的邻域,一般用邻域半径eps来确定。指定数量用min_samples来表示。

边界点:处于核心点的邻域内的非核心点。

噪声点:邻域内没有核心点的点

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

showswoller

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值