导弹防御

最长上升子序列

假定dp [k]表示以x[k]做为“终点”的最长上升子序列的长度,那么:

dp [1]  = 1

dp [k]  = max { dp [i] :1<i < k 且 x[i] < x[k]且 k≠1 } + 1

最长下降子序列

假定dp [k]表示以x[k]做为“终点”的最长下降子序列的长度,那么:

dp [1]  = 1

dp [k]  = max { dp [i] :1<i < k 且 x[i] > x[k]且 k≠1 } + 1


例题:

某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。

Input Description

输入导弹依次飞来的高度(雷达给出的高度数据是不大于30000的正整数)

 Output Description

输出这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。

Sample Input

Sample Output

Data Size & Hint

导弹的高度<=30000,导弹个数<=20

题解:

题中第一问和第二问实际上分别是求序列的最长下降子序列和最长上升子序列。
下面以最长下降子序列为例,
状态转移方程为:dp1[i] = max(dp1[j]) + 1, j从1到i-1且a[j] > a[i]。
即从i之前(不包含i)的样例中找到满足下降条件(a[j]>a[i])的最大值,并加1。
最后,dp1数组中的最大值即为所求。

需求响应动态冰蓄冷系统与需求响应策略的优化研究(Matlab代码实现)内容概要:本文围绕需求响应动态冰蓄冷系统及其优化策略展开研究,结合Matlab代码实现,探讨了在电力需求侧管理背景下,冰蓄冷系统如何通过优化运行策略参与需求响应,以实现削峰填谷、降低用电成本和提升能源利用效率的目标。研究内容包括系统建模、负荷预测、优化算法设计(如智能优化算法)以及多场景仿真验证,重点分析不同需求响应机制下系统的经济性和运行特性,并通过Matlab编程实现模型求解与结果可视化,为实际工程应用提供理论支持和技术路径。; 适合人群:具备一定电力系统、能源工程或自动化背景的研究生、科研人员及从事综合能源系统优化工作的工程师;熟悉Matlab编程且对需求响应、储能优化等领域感兴趣的技术人员。; 使用场景及目标:①用于高校科研中关于冰蓄冷系统与需求响应协同优化的课题研究;②支撑企业开展楼宇能源管理系统、智慧园区调度平台的设计与仿真;③为政策制定者评估需求响应措施的有效性提供量化分析工具。; 阅读建议:建议读者结合文中Matlab代码逐段理解模型构建与算法实现过程,重点关注目标函数设定、约束条件处理及优化结果分析部分,同时可拓展应用其他智能算法进行对比实验,加深对系统优化机制的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值