背包问题


  • 多阶段动态规划问题:有一类动态规划可解的问题,它可以描述成若干个有序的阶段,且每个阶段的状态有关,一般把这类问题称为多阶段动态规划问题

01背包问题

  • 有n件物品,每件物品的重量为w[i],价值为c[i]。现有一个重量为V的背包,问如何选取物品放入背包,使得背包内物品的总价值最大。其中每种物品只有1件
  • dp[i][j]表示前i件物品恰好装入容量为j的背包所能获得的最大价值
    • 不放第i件物品,则dp[i][j] = dp[i-1][j]
    • 放第i件物品,那么问题转化为前i – 1件物品恰好装入容量j – w[i]的背包中所能获得的最大价值dp[i-1][j-w[i]] + c[i]
  • 递推方程dp[i][j] = max{ dp[i-1][j], dp[i-1][j-w[i]]+c[i] }
  • 
    
  • for(int i = 1; i <= n; i++) {
    	for(int j = 1, j <= v; j++)
    		if(j < w[i])
    			dp[i][j] = dp[i-1][j];
    		else
    			dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + c[i]);
    }
    for(int i = 1; i <= n; i++) {
    	for(int j = v; j >= w[i]; j--)
    		dp[v] = max(dp[v], dp[v[w[i]]] + c[i]);
    }


内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了卷积神经网络(CNN)在特征提取方面的优势与长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度与泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果分析,突出其在科研与工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础和Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习与智能优化算法结合应用的研究者。; 使用场景及目标:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型与贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建与超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块与混合神经网络结构的设计逻辑,通过调整数据集和参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值