Codeforces Round #404 (Div. 2) D. Anton and School - 2 排列组合好题

本文介绍了一种算法,用于计算给定括号序列中不同类型的正规简单括号序列(RSBS)子序列的数量,并通过模运算处理大数值结果。

D. Anton and School - 2
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

As you probably know, Anton goes to school. One of the school subjects that Anton studies is Bracketology. On the Bracketology lessons students usually learn different sequences that consist of round brackets (characters "(" and ")" (without quotes)).

On the last lesson Anton learned about the regular simple bracket sequences (RSBS). A bracket sequence s of length n is an RSBS if the following conditions are met:

  • It is not empty (that is n ≠ 0).
  • The length of the sequence is even.
  • First  charactes of the sequence are equal to "(".
  • Last  charactes of the sequence are equal to ")".

For example, the sequence "((()))" is an RSBS but the sequences "((())" and "(()())" are not RSBS.

Elena Ivanovna, Anton's teacher, gave him the following task as a homework. Given a bracket sequence s. Find the number of its distinct subsequences such that they are RSBS. Note that a subsequence of s is a string that can be obtained from s by deleting some of its elements. Two subsequences are considered distinct if distinct sets of positions are deleted.

Because the answer can be very big and Anton's teacher doesn't like big numbers, she asks Anton to find the answer modulo 109 + 7.

Anton thought of this task for a very long time, but he still doesn't know how to solve it. Help Anton to solve this task and write a program that finds the answer for it!

Input

The only line of the input contains a string s — the bracket sequence given in Anton's homework. The string consists only of characters "(" and ")" (without quotes). It's guaranteed that the string is not empty and its length doesn't exceed 200 000.

Output

Output one number — the answer for the task modulo 109 + 7.

Examples
input
)(()()
output
6
input
()()()
output
7
input
)))
output
0
Note

In the first sample the following subsequences are possible:

  • If we delete characters at the positions 1 and 5 (numbering starts with one), we will get the subsequence "(())".
  • If we delete characters at the positions 123 and 4, we will get the subsequence "()".
  • If we delete characters at the positions 124 and 5, we will get the subsequence "()".
  • If we delete characters at the positions 125 and 6, we will get the subsequence "()".
  • If we delete characters at the positions 134 and 5, we will get the subsequence "()".
  • If we delete characters at the positions 135 and 6, we will get the subsequence "()".

The rest of the subsequnces are not RSBS. So we got 6 distinct subsequences that are RSBS, so the answer is 6.


对每个‘(’ 存一下他前面‘(’的个数(假设是n,不包括他自己)和后面‘)’的个数(假设是m),以这个‘(’为中心的子串的数量是


有一个范德蒙恒等式 

特殊的当k=n或m时

和杨辉三角式


当k=m时,上式=

当k=n+1时,上式=

两种情况的结果一样

  

求组合数时,因为除法会影响余数,所以要用费马小定理求分母部分的乘法逆元


#include<stdio.h>
#include<string.h>
#include<math.h>
#include<string>
#include<algorithm>
#include<queue>
#include<vector>
#include<map>
#include<set>
#define eps 1e-9
#define PI 3.141592653589793
#define bs 1000000007
#define bsize 256
#define MEM(a) memset(a,0,sizeof(a))
typedef long long ll;
using namespace std;
ll jie[200050],ni[200050];
ll poww(ll a)
{
    ll p=bs-2;
    ll t=a,ans=1;
    while(p)
    {
        if(p&1)
        {
            ans*=t;
            ans%=bs;
        }
        t*=t;
        t%=bs;
        p>>=1;
    }
    return ans;
}
int init()
{
	jie[0]=1;
	ni[0]=1;
	for(ll i=1;i<=200000;i++)
	{
		jie[i]=(jie[i-1]*i)%bs;
		ni[i]=poww(jie[i])%bs;
	}
}
int le[200005],ri[200005];
int main()
{
	char ch[200005];
	scanf("%s",ch+1);
	init();
	int len=strlen(ch+1);
	int  i,j;
	for(i=1;i<=len;i++)
	{
		le[i]=le[i-1];
		if(ch[i]=='(')
		le[i]++;
	}
	for(i=len;i>=1;i--)
	{
		ri[i]=ri[i+1];
		if(ch[i]==')')
		ri[i]++;
	}
	long long sum=0;
	int n,m;
	for(i=1;i<=len;i++)
	{
		if(ch[i]=='(')
		{
			n=le[i]-1;
			m=ri[i];
			sum+=(((jie[n+m]*ni[m-1])%bs)*ni[n+1])%bs;
			sum%=bs;
		}
	}
	printf("%lld\n",sum);
 }




内容概要:本文档介绍了基于3D FDTD(时域有限差分)方法在MATLAB平台上对微带线馈电的矩形天线进行仿真分析的技术方案,重点在于模拟超MATLAB基于3D FDTD的微带线馈矩形天线分析[用于模拟超宽带脉冲通过线馈矩形天线的传播,以计算微带结构的回波损耗参数]宽带脉冲信号通过天线结构的传播过程,并计算微带结构的回波损耗参数(S11),以评估天线的匹配性能和辐射特性。该方法通过建立三维电磁场模型,精确求解麦克斯韦方程组,适用于高频电磁仿真,能够有效分析天线在宽频带内的响应特性。文档还提及该资源属于一个涵盖多个科研方向的综合性MATLAB仿真资源包,涉及通信、信号处理、电力系统、机器学习等多个领域。; 适合人群:具备电磁场与微波技术基础知识,熟悉MATLAB编程及数值仿真的高校研究生、科研人员及通信工程领域技术人员。; 使用场景及目标:① 掌握3D FDTD方法在天线仿真中的具体实现流程;② 分析微带天线的回波损耗特性,优化天线设计参数以提升宽带匹配性能;③ 学习复杂电磁问的数值建模与仿真技巧,拓展在射频与无线通信领域的研究能力。; 阅读建议:建议读者结合电磁理论基础,仔细理解FDTD算法的离散化过程和边界条件设置,运行并调试提供的MATLAB代码,通过调整天线几何尺寸和材料参数观察回波损耗曲线的变化,从而深入掌握仿真原理与工程应用方法。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值