POJ - 3268 Silver Cow Party

本文介绍了一个算法问题,即如何找到N个农场中某头奶牛参加聚会并返回所需最长总时间的问题。通过建立两个图,并使用两次迪杰斯特拉算法(Dijkstra),分别计算从聚会地点到各农场的最短路径及返回路径,从而高效地解决了该问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Silver Cow Party
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 20881 Accepted: 9550

Description

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input

Line 1: Three space-separated integers, respectively:  NM, and  X 
Lines 2.. M+1: Line  i+1 describes road  i with three space-separated integers:  AiBi, and  Ti. The described road runs from farm  Ai to farm  Bi, requiring  Ti time units to traverse.

Output

Line 1: One integer: the maximum of time any one cow must walk.

Sample Input

4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3

Sample Output

10

Hint

Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.

Source

把边正向建一个图,在反向建一个图,两遍dj,正向建是求回去的最短路径,而反向建是因为用dj求每个点到单点的最短距离复杂度很高,反向建图后求终点到每个点的最短路径就可以了

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<math.h>
#include<string>
#include<algorithm>
#include<queue>
#include<vector>
#include<map>
#include<set>
#define eps 1e-9
#define PI 3.141592653589793
#define bs 1000000007
#define bsize 256
#define MEM(a) memset(a,0,sizeof(a))
#define inf 0x3f3f3f3f
#define rep(i,be,n) for(i=be;i<n;i++)
typedef long long ll;
using namespace std;
int mp[2][1005][1005];
int book[1005];
int x,n,m;
int dijis(int k)
{
	int index,i,j,minn;
	MEM(book);
	book[x]=1;
	for(i=1;i<=n;i++)
	{	
		minn=inf;
		for(j=1;j<=n;j++)
		{
			if(!book[j]&&mp[k][x][j]<minn)
			{
				index=j;
				minn=mp[k][x][j];
			}
		}
		book[index]=1;
		for(j=1;j<=n;j++)
		{
			if(!book[j]&&mp[k][index][j]+minn<mp[k][x][j])
			{
				mp[k][x][j]=mp[k][index][j]+minn;
			}
		}
	}
}
int main()
{
	int i,j,a,b,t;
	memset(mp,inf,sizeof(mp));
	scanf("%d %d %d",&n,&m,&x);
	while(m--)
	{
		scanf("%d %d %d",&a,&b,&t);
		if(mp[0][a][b]>t)
		{
			mp[0][a][b]=t;
		}
		if(mp[1][b][a]>t)
		{
			mp[1][b][a]=t;
		}
	}
	dijis(0);
	dijis(1);
	int ans=0;
	for(i=1;i<=n;i++)
	{
		if(i==x)
		continue;
		ans=max(ans,mp[0][x][i]+mp[1][x][i]);
	}
	printf("%d\n",ans);
	return 0;
 }



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值