4.1 学习目标
- 学习机器学习模型的建模过程与调参流程
- 完成相应学习打卡任务
4.2 内容介绍
-
逻辑回归模型:
- 理解逻辑回归模型;
- 逻辑回归模型的应用;
- 逻辑回归的优缺点;
-
树模型:
- 理解树模型;
- 树模型的应用;
- 树模型的优缺点;
-
集成模型
- 基于bagging思想的集成模型
- 随机森林模型
- 基于boosting思想的集成模型
- XGBoost模型
- LightGBM模型
- CatBoost模型
- 基于bagging思想的集成模型
-
模型对比与性能评估:
- 回归模型/树模型/集成模型;
- 模型评估方法;
- 模型评价结果;
-
模型调参:
-
贪心调参方法;
-
网格调参方法;
-
贝叶斯调参方法;
-
4.5 代码示例
4.5.1 导入相关和相关设置
import pandas as pd
import numpy as np
from sklearn.metrics import f1_score
import os
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
4.5.2 读取数据
reduce_mean_usage 函数通过调整数据类型,帮助我们减少数据在内存中占用的空间
def reduce_mem_usage(df):
start_mem = df.memory_usage().sum() / 1024**2
print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
for col in df.columns:
col_type = df[col].dtype
if col_type != object:
c_min = df[col].min()
c_max = df[col].max()
if str(col_type)[:3] == 'int':
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
df[col] = df[col].astype(np.int8)
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
df[col] = df[col].astype(np.int16)
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
df[col] = df[col].astype(np.int32)
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
df[col] = df[col].astype(np.int64)
else:
if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
df[col] = df[col].astype(np.float16)
elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
df[col] = df[col].astype(np.float32)
else:
df[col] = df[col].astype(np.float64)
else:
df[col] = df[col].astype('category')
end_mem = df.memory_usage().sum() / 1024**2
print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
return df
# 读取数据
data = pd.read_csv('./train.csv')
# 简单预处理
data_list = []
for items in data.values:
data_list.append([items[0]] + [float(i) for i in items[1].split(',')] + [items[2]])
data = pd.DataFrame(np.array(data_list))
data.columns = ['id'] + ['s_'+str(i) for i in range(len(data_list[0])-2)] + ['label']
data = reduce_mem_usage(data)
Memory usage of dataframe is 157.93 MB
Memory usage after optimization is: 39.67 MB
Decreased by 74.9%
4.5.3 简单建模
基于树模型的算法特性,异常值、缺失值处理可以跳过,但是对于业务较为了解的同学也可以自己对缺失异常值进行处理,效果可能会更优于模型处理的结果。
注:以下建模的据集并未构造任何特征,直接使用原特征。本次主要任务还是模建模调参。
- 建模之前的预操作
from sklearn.model_selection import KFold
# 分离数据集,方便进行交叉验证
x_train = data.drop(['id','label'],axis=1)
y_train = data['label']
# 五折交叉验证
folds = 5
seed = 2021
kf = KFold(n_splits = folds,shuffle=True,random_state=seed)
- 因为树模型中没有f1-score评价指标,所以需要自定义评价指标,在模型迭代中返回验证集f1-score变化情况。
def f1_score_vail(preds,data_vali):
labels = data_vali.get_label() # 这里reshape()将其转换为4行一列
preds = np.argmax(preds.reshape(4,-1),axis=0)
score_vail = f1_score(y_true=labels,y_pred=preds,average = 'macro')
return 'f1_score',score_vail,True
- 使用Lightgbm进行建模
"""对训练集数据进行划分,分成训练集和验证集,并进行相应的操作"""
from sklearn.model_selection import train_test_split
import lightgbm as lgb
# 数据集划分 validation 验证
x_train_split,x_val,y_train_split,y_val = train_test_split(x_train,y_train,test_size=0.2)
train_matrix = lgb.Dataset(x_train_split,label=y_train_split)
valid_matrix = lgb.Dataset(x_val,label=y_val)
params = {
"learning_rate": 0.1,
"boosting": 'gbdt',
"lambda_l2": 0.1,
"max_depth": -1,
"num_leaves": 128,
"bagging_fraction": 0.8,
"feature_fraction": 0.8,
"metric": None,
"objective": "multiclass",
"num_class": 4,
"nthread": 10,
"verbose": -1,
}
"""使用训练集数据进行模型训练"""
model = lgb.train(params,
train_set=train_matrix,
valid_sets=valid_matrix,
num_boost_round=2000,
verbose_eval=50,
early_stopping_rounds=200,
feval=f1_score_vail
)
Training until validation scores don't improve for 200 rounds
[50] valid_0's multi_logloss: 0.048446 valid_0's f1_score: 0.96088
[100] valid_0's multi_logloss: 0.0430823 valid_0's f1_score: 0.966723
[150] valid_0's multi_logloss: 0.0448085 valid_0's f1_score: 0.969935
[200] valid_0's multi_logloss: 0.0464403 valid_0's f1_score: 0.971709
[250] valid_0's multi_logloss: 0.0478184 valid_0's f1_score: 0.972054
Early stopping, best iteration is:
[86] valid_0's multi_logloss: 0.0428137 valid_0's f1_score: 0.965724
- 对验证集进行预测
a = np.array([[1, 5, 5, 2],
[9, 6, 2, 8],
[3, 7, 9, 1]])
b=np.argmax(a, axis=0)#对二维矩阵来讲a[0][1]会有两个索引方向,第一个方向为a[0],默认按列方向搜索最大值
#a的第一列为1,9,3,最大值为9,所在位置为1,
#a的第一列为5,6,7,最大值为7,所在位置为2,
#此此类推,因为a有4列,所以得到的b为1行4列,
print(b)#[1 2 2 1]
c=np.argmax(a, axis=1)#现在按照a[0][1]中的a[1]方向,即行方向搜索最大值,
#a的第一行为1,5,5,2,最大值为5(虽然有2个5,但取第一个5所在的位置),索引值为1,
#a的第2行为9,6,2,8,最大值为9,索引值为0,
#因为a有3行,所以得到的c有3个值,即为1行3列
argmax:https://blog.youkuaiyun.com/weixin_38145317/article/details/79650188
val_pre_lgb = model.predict(x_val, num_iteration=model.best_iteration)
preds = np.argmax(val_pre_lgb, axis=1)
score = f1_score(y_true=y_val, y_pred=preds, average='macro')
print('未调参前lightgbm单模型在验证集上的f1:{}'.format(score))
未调参前lightgbm单模型在验证集上的f1:0.9657243693065285
- 更进一步的,使用5折交叉验证进行建模预测
cv_scores = []
for i,(train_index,valid_index) in enumerate(kf.split(x_train,y_train)):
print('************************************ {} ************************************'.format(str(i+1)))
x_train_split,y_train_split,x_val,y_val = x_train.iloc[train_index],y_train[train_index],x_train.iloc[valid_index],y_train[valid_index]
train_matrix = lgb.Dataset(x_train_split,label=y_train_split)
valid_matrix = lgb.Dataset(x_val,label=y_val)
params = {
"learning_rate": 0.1,
"boosting": 'gbdt',
"lambda_l2": 0.1,
"max_depth": -1,
"num_leaves": 128,
"bagging_fraction": 0.8,
"feature_fraction": 0.8,
"metric": None,
"objective": "multiclass",
"num_class": 4,
"nthread": 10,
"verbose": -1,
}
model = lgb.train(
params,
train_set=train_matrix,
valid_sets=valid_matrix,
num_boost_round=2000,
verbose_eval=100,
early_stopping_rounds=200,
feval=f1_score_vail
)
val_pred = model.predict(x_val,num_iteration=model.best_iteration)
val_pred = np.argmax(val_pred,axis=1)
cv_scores.append(f1_score(y_true=y_val, y_pred=val_pred, average='macro'))
print(cv_scores)
print("lgb_scotrainre_list:{}".format(cv_scores))
print("lgb_score_mean:{}".format(np.mean(cv_scores)))
print("lgb_score_std:{}".format(np.std(cv_scores)))
************************************ 1 ************************************
Training until validation scores don't improve for 200 rounds
[100] valid_0's multi_logloss: 0.0408155 valid_0's f1_score: 0.966797
[200] valid_0's multi_logloss: 0.0437957 valid_0's f1_score: 0.971239
Early stopping, best iteration is:
[96] valid_0's multi_logloss: 0.0406453 valid_0's f1_score: 0.967452
[0.9674515729721614]
************************************ 2 ************************************
Training until validation scores don't improve for 200 rounds
[100] valid_0's multi_logloss: 0.0472933 valid_0's f1_score: 0.965828
[200] valid_0's multi_logloss: 0.0514952 valid_0's f1_score: 0.968138
Early stopping, best iteration is:
[87] valid_0's multi_logloss: 0.0467472 valid_0's f1_score: 0.96567
[0.9674515729721614, 0.9656700872844327]
************************************ 3 ************************************
Training until validation scores don't improve for 200 rounds
[100] valid_0's multi_logloss: 0.0378154 valid_0's f1_score: 0.971004
[200] valid_0's multi_logloss: 0.0405053 valid_0's f1_score: 0.973736
Early stopping, best iteration is:
[93] valid_0's multi_logloss: 0.037734 valid_0's f1_score: 0.970004
[0.9674515729721614, 0.9656700872844327, 0.9700043639844769]
************************************ 4 ************************************
Training until validation scores don't improve for 200 rounds
[100] valid_0's multi_logloss: 0.0495142 valid_0's f1_score: 0.967106
[200] valid_0's multi_logloss: 0.0542324 valid_0's f1_score: 0.969746
Early stopping, best iteration is:
[84] valid_0's multi_logloss: 0.0490886 valid_0's f1_score: 0.965566
[0.9674515729721614, 0.9656700872844327, 0.9700043639844769, 0.9655663272378014]
************************************ 5 ************************************
Training until validation scores don't improve for 200 rounds
[100] valid_0's multi_logloss: 0.0412544 valid_0's f1_score: 0.964054
[200] valid_0's multi_logloss: 0.0443025 valid_0's f1_score: 0.965507
Early stopping, best iteration is:
[96] valid_0's multi_logloss: 0.0411855 valid_0's f1_score: 0.963114
[0.9674515729721614, 0.9656700872844327, 0.9700043639844769, 0.9655663272378014, 0.9631137190307674]
lgb_scotrainre_list:[0.9674515729721614, 0.9656700872844327, 0.9700043639844769, 0.9655663272378014, 0.9631137190307674]
lgb_score_mean:0.9663612141019279
lgb_score_std:0.0022854824074775683
4.5.4 模型调参
- 1.贪心调参
先使用当前对模型影响最大的参数进行调参,达到当前参数下的模型最优化,再使用对模型影响次之的参数进行调参,如此下去,直到所有的参数调整完毕.
这个方法的缺点就是可能会调到局部最优而不是全局最优,但是只需要一步一步的进行参数最优化调试即可,容易理解。
需要注意的是在树模型中参数调整的顺序,也就是各个参数对模型的影响程度,这里列举一下日常调参过程中常用的参数和调参顺序:
- ①:max_depth,num_leaves
- ②:min_data_in_leaf,min_child_weight
- ③:bagging_fraction,feature_fraction,bagging_freq
- ④:reg_lambda、reg_alpha
- ⑤:min_split_gain
from sklearn.model_selection import cross_val_score
# 调objective
best_obj = dict()
for obj in objective:
model = LGBMRegressor(objective=obj)
"""预测并计算roc的相关指标"""
score = cross_val_score(model, X_train, y_train, cv=5, scoring='f1').mean()
best_obj[obj] = score
# num_leaves
best_leaves = dict()
for leaves in num_leaves:
model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0], num_leaves=leaves)
"""预测并计算roc的相关指标"""
score = cross_val_score(model, X_train, y_train, cv=5, scoring='f1').mean()
best_leaves[leaves] = score
# max_depth
best_depth = dict()
for depth in max_depth:
model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0],
num_leaves=min(best_leaves.items(), key=lambda x:x[1])[0],
max_depth=depth)
"""预测并计算roc的相关指标"""
score = cross_val_score(model, X_train, y_train, cv=5, scoring='f1').mean()
best_depth[depth] = score
"""
可依次将模型的参数通过上面的方式进行调整优化,并且通过可视化观察在每一个最优参数下模型的得分情况
"""
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-12-dba9ecf3027e> in <module>
2 # 调objective
3 best_obj = dict()
----> 4 for obj in objective:
5 model = LGBMRegressor(objective=obj)
6 """预测并计算roc的相关指标"""
NameError: name 'objective' is not defined
可依次将模型的参数通过上面的方式进行调整优化,并且通过可视化观察在每一个最优参数下模型的得分情况
- 2.网格搜索
sklearn 提供GridSearchCV用于进行网格搜索,只需要把模型的参数输进去,就能给出最优化的结果和参数。相比起贪心调参,网格搜索的结果会更优,但是网格搜索只适合于小数据集,一旦数据的量级上去了,很难得出结果。
同样以Lightgbm算法为例,进行网格搜索调参:
"""通过网格搜索确定最优参数"""
from sklearn.model_selection import GridSearchCV
def get_best_cv_params(learning_rate=0.1, n_estimators=581,num_leaves=31,max_depth=-1,bagging_fraction=1.0,feature_fraction=1.0,bagging_fraction_freq=0,min_data_in_leaf=20,min_child_weight=0.001,min_split_gain=0,reg_lambda=0,reg_alpha=0,pagram_grid=None):
# 设置5折交叉验证
cv_fold = KFold(n_splits=5,shuffle=True,random_state=2021)
model_lgb = lgb.LGBMClassifier(learning_rate = learning_rate,
n_estimators = n_estimators,
num_leaves = num_leaves,
max_depth = max_depth,
bagging_fraction = bagging_fraction,
feature_fraction = feature_fraction,
bagging_freq = bagging_feq,
min_data_in_leaf = min_data_in_leaf,
min_child_weight = min_child_weight,
min_split_gain = min_split_gain,
reg_lambda = reg_lambda,
reg_alpha = reg_alpha,
n_jobs = 8)
f1 = make_scorer(f1_score,average = 'micro')
grid_search = GridSearchCV(estimator = model_lgb,
cv = cv_fold,
pagram_grid = pagram_grid,
scoring = f1)
grid_search.fit(x_train,y_train)
print('模型当前最优参数为:{}'.format(grid_search.best_params_))
print('模型当前最优得分为:{}'.format(grid_search.best_score_))
"""以下代码未运行,耗时较长,请谨慎运行,且每一步的最优参数需要在下一步进行手动更新,请注意"""
"""
需要注意一下的是,除了获取上面的获取num_boost_round时候用的是原生的lightgbm(因为要用自带的cv)
下面配合GridSearchCV时必须使用sklearn接口的lightgbm。
"""
"""设置n_estimators 为581,调整num_leaves和max_depth,这里选择先粗调再细调"""
lgb_params = {'num_leaves': range(10, 80, 5), 'max_depth': range(3,10,2)}
get_best_cv_params(learning_rate=0.1, n_estimators=581, num_leaves=None, max_depth=None, min_data_in_leaf=20,
min_child_weight=0.001,bagging_fraction=1.0, feature_fraction=1.0, bagging_freq=0,
min_split_gain=0, reg_lambda=0, reg_alpha=0, param_grid=lgb_params)
"""num_leaves为30,max_depth为7,进一步细调num_leaves和max_depth"""
lgb_params = {'num_leaves': range(25, 35, 1), 'max_depth': range(5,9,1)}
get_best_cv_params(learning_rate=0.1, n_estimators=85, num_leaves=None, max_depth=None, min_data_in_leaf=20,
min_child_weight=0.001,bagging_fraction=1.0, feature_fraction=1.0, bagging_freq=0,
min_split_gain=0, reg_lambda=0, reg_alpha=0, param_grid=lgb_params)
"""
确定min_data_in_leaf为45,min_child_weight为0.001 ,下面进行bagging_fraction、feature_fraction和bagging_freq的调参
"""
lgb_params = {'bagging_fraction': [i/10 for i in range(5,10,1)],
'feature_fraction': [i/10 for i in range(5,10,1)],
'bagging_freq': range(0,81,10)
}
get_best_cv_params(learning_rate=0.1, n_estimators=85, num_leaves=29, max_depth=7, min_data_in_leaf=45,
min_child_weight=0.001,bagging_fraction=None, feature_fraction=None, bagging_freq=None,
min_split_gain=0, reg_lambda=0, reg_alpha=0, param_grid=lgb_params)
"""
确定bagging_fraction为0.4、feature_fraction为0.6、bagging_freq为 ,下面进行reg_lambda、reg_alpha的调参
"""
lgb_params = {'reg_lambda': [0,0.001,0.01,0.03,0.08,0.3,0.5], 'reg_alpha': [0,0.001,0.01,0.03,0.08,0.3,0.5]}
get_best_cv_params(learning_rate=0.1, n_estimators=85, num_leaves=29, max_depth=7, min_data_in_leaf=45,
min_child_weight=0.001,bagging_fraction=0.9, feature_fraction=0.9, bagging_freq=40,
min_split_gain=0, reg_lambda=None, reg_alpha=None, param_grid=lgb_params)
"""
确定reg_lambda、reg_alpha都为0,下面进行min_split_gain的调参
"""
lgb_params = {'min_split_gain': [i/10 for i in range(0,11,1)]}
get_best_cv_params(learning_rate=0.1, n_estimators=85, num_leaves=29, max_depth=7, min_data_in_leaf=45,
min_child_weight=0.001,bagging_fraction=0.9, feature_fraction=0.9, bagging_freq=40,
min_split_gain=None, reg_lambda=0, reg_alpha=0, param_grid=lgb_params)
"""
参数确定好了以后,我们设置一个比较小的learning_rate 0.005,来确定最终的num_boost_round
"""
# 设置5折交叉验证
# cv_fold = StratifiedKFold(n_splits=5, random_state=0, shuffle=True, )
final_params = {
'boosting_type':'gbdt',
'learning_rate':0.01,
'num_leaves':29,
'max_depth':7,
'objective':'multiclass',
'num_class':4,
'min_data_in_leaf':45,
'min_child_weight':0.001,
'bagging_fraction':0.9,
'feature_fraction':0.9,
'bagging_freq':40,
'min_split_gain':0,
'reg_lambda':0,
'reg_alpha':0,
'nthread':6
}
cv_result = lgb.cv(train_set=lgb_train,
early_stopping_rounds=20,
num_boost_round=5000,
nfold=5,
stratified=True,
params = final_params,
feval=f1_score_vali,
seed=0,
)
range(10, 80, 5)
在实际调整过程中,可先设置一个较大的学习率(上面的例子中0.1),通过Lgb原生的cv函数进行树个数的确定,之后再通过上面的示例代码进行参数的调整优化
最后针对最优的参数设置一个较小的学习率(例如0.05),同样通过cv函数确定树的个数,确定最终的参数。
需要注意的是,针对大数据集,上面每一层参数的调整都需要耗费较长时间,
- 贝叶斯调参
在使用之前需要先安装包bayesian-optimization,运行如下命令即可:
贝叶斯调参的主要思想是:给定优化的目标函数(广义的函数,只需指定输入和输出即可,无需知道内部结构以及数学性质),通过不断地添加样本点来更新目标函数的后验分布(高斯过程,直到后验分布基本贴合于真实分布)。简单的说,就是考虑了上一次参数的信息,从而更好的调整当前的参数。
贝叶斯调参的步骤如下: 😅
- 定义优化函数(rf_cv)
- 建立模型
- 定义待优化的参数
- 得到优化结果,并返回要优化的分数指标
from sklearn.model_selection import cross_val_score
"""定义优化函数"""
def rf_cv_lgb(num_leaves, max_depth, bagging_fraction, feature_fraction, bagging_freq, min_data_in_leaf,
min_child_weight, min_split_gain, reg_lambda, reg_alpha):
# 建立模型
model_lgb = lgb.LGBMClassifier(boosting_type='gbdt', objective='multiclass', num_class=4,
learning_rate=0.1, n_estimators=5000,
num_leaves=int(num_leaves), max_depth=int(max_depth),
bagging_fraction=round(bagging_fraction, 2), feature_fraction=round(feature_fraction, 2),
bagging_freq=int(bagging_freq), min_data_in_leaf=int(min_data_in_leaf),
min_child_weight=min_child_weight, min_split_gain=min_split_gain,
reg_lambda=reg_lambda, reg_alpha=reg_alpha,
n_jobs= 8
)
f1 = make_scorer(f1_score, average='micro')
val = cross_val_score(model_lgb, X_train_split, y_train_split, cv=5, scoring=f1).mean()
return val
from bayes_opt import BayesianOptimization
"""定义优化参数"""
bayes_lgb = BayesianOptimization(
rf_cv_lgb,
{
'num_leaves':(10, 200),
'max_depth':(3, 20),
'bagging_fraction':(0.5, 1.0),
'feature_fraction':(0.5, 1.0),
'bagging_freq':(0, 100),
'min_data_in_leaf':(10,100),
'min_child_weight':(0, 10),
'min_split_gain':(0.0, 1.0),
'reg_alpha':(0.0, 10),
'reg_lambda':(0.0, 10),
}
)
"""开始优化"""
bayes_lgb.maximize(n_iter=10)
| iter | target | baggin... | baggin... | featur... | max_depth | min_ch... | min_da... | min_sp... | num_le... | reg_alpha | reg_la... |
-------------------------------------------------------------------------------------------------------------------------------------------------
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
D:\Ljc\Aacon\Anaconda3\lib\site-packages\bayes_opt\target_space.py in probe(self, params)
190 try:
--> 191 target = self._cache[_hashable(x)]
192 except KeyError:
KeyError: (0.6508155736019849, 49.54695263456983, 0.893495504752377, 19.43624882376842, 7.359802977985826, 34.759929140940606, 0.9692072315173706, 111.96538389153179, 2.1595497164382427, 4.059557646933362)
During handling of the above exception, another exception occurred:
NameError Traceback (most recent call last)
<ipython-input-18-2c2786145eac> in <module>
18
19 """开始优化"""
---> 20 bayes_lgb.maximize(n_iter=10)
D:\Ljc\Aacon\Anaconda3\lib\site-packages\bayes_opt\bayesian_optimization.py in maximize(self, init_points, n_iter, acq, kappa, kappa_decay, kappa_decay_delay, xi, **gp_params)
183 iteration += 1
184
--> 185 self.probe(x_probe, lazy=False)
186
187 if self._bounds_transformer:
D:\Ljc\Aacon\Anaconda3\lib\site-packages\bayes_opt\bayesian_optimization.py in probe(self, params, lazy)
114 self._queue.add(params)
115 else:
--> 116 self._space.probe(params)
117 self.dispatch(Events.OPTIMIZATION_STEP)
118
D:\Ljc\Aacon\Anaconda3\lib\site-packages\bayes_opt\target_space.py in probe(self, params)
192 except KeyError:
193 params = dict(zip(self._keys, x))
--> 194 target = self.target_func(**params)
195 self.register(x, target)
196 return target
<ipython-input-16-45eb6e6667c6> in rf_cv_lgb(num_leaves, max_depth, bagging_fraction, feature_fraction, bagging_freq, min_data_in_leaf, min_child_weight, min_split_gain, reg_lambda, reg_alpha)
14 n_jobs= 8
15 )
---> 16 f1 = make_scorer(f1_score, average='micro')
17 val = cross_val_score(model_lgb, X_train_split, y_train_split, cv=5, scoring=f1).mean()
18
NameError: name 'make_scorer' is not defined
"""显示优化结果"""
bayes_lgb.max
参数优化完成后,我们可以根据优化后的参数建立新的模型.降低学习率并寻找最优模型迭代次数
"""调整一个较小的学习率,并通过cv函数确定当前最优的迭代次数"""
base_params_lgb = {
'boosting_type': 'gbdt',
'objective': 'multiclass',
'num_class': 4,
'learning_rate': 0.01,
'num_leaves': 138,
'max_depth': 11,
'min_data_in_leaf': 43,
'min_child_weight':6.5,
'bagging_fraction': 0.64,
'feature_fraction': 0.93,
'bagging_freq': 49,
'reg_lambda': 7,
'reg_alpha': 0.21,
'min_split_gain': 0.288,
'nthread': 10,
'verbose': -1,
}
cv_result_lgb = lgb.cv(
train_set=train_matrix,
early_stopping_rounds=1000,
num_boost_round=20000,
nfold=5,
stratified=True,
shuffle=True,
params=base_params_lgb,
feval=f1_score_vali,
seed=0
)
print('迭代次数{}'.format(len(cv_result_lgb['f1_score-mean'])))
print('最终模型的f1为{}'.format(max(cv_result_lgb['f1_score-mean'])))
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-19-3920783d8434> in <module>
27 shuffle=True,
28 params=base_params_lgb,
---> 29 feval=f1_score_vali,
30 seed=0
31 )
NameError: name 'f1_score_vali' is not defined
模型参数已经确定,建立最终模型并对验证集进行验证
import lightgbm as lgb
"""使用lightgbm 5折交叉验证进行建模预测"""
cv_scores = []
for i, (train_index, valid_index) in enumerate(kf.split(X_train, y_train)):
print('************************************ {} ************************************'.format(str(i+1)))
x_train_split, y_train_split, x_val, y_val = x_train_split.iloc[train_index], y_train[train_index], X_train.iloc[valid_index], y_train[valid_index]
train_matrix = lgb.Dataset(x_train_split, label=y_train_split)
valid_matrix = lgb.Dataset(x_val, label=y_val)
params = {
'boosting_type': 'gbdt',
'objective': 'multiclass',
'num_class': 4,
'learning_rate': 0.01,
'num_leaves': 138,
'max_depth': 11,
'min_data_in_leaf': 43,
'min_child_weight':6.5,
'bagging_fraction': 0.64,
'feature_fraction': 0.93,
'bagging_freq': 49,
'reg_lambda': 7,
'reg_alpha': 0.21,
'min_split_gain': 0.288,
'nthread': 10,
'verbose': -1,
}
model = lgb.train(params, train_set=train_matrix, num_boost_round=4833, valid_sets=valid_matrix,
verbose_eval=1000, early_stopping_rounds=200, feval=f1_score_vali)
val_pred = model.predict(X_val, num_iteration=model.best_iteration)
val_pred = np.argmax(val_pred, axis=1)
cv_scores.append(f1_score(y_true=y_val, y_pred=val_pred, average='macro'))
print(cv_scores)
print("lgb_scotrainre_list:{}".format(cv_scores))
print("lgb_score_mean:{}".format(np.mean(cv_scores)))
print("lgb_score_std:{}".format(np.std(cv_scores)))
模型调参小总结
-
集成模型内置的cv函数可以较快的进行单一参数的调节,一般可以用来优先确定树模型的迭代次数
-
数据量较大的时候(例如本次项目的数据),网格搜索调参会特别特别慢,不建议尝试
-
集成模型中原生库和sklearn下的库部分参数不一致,需要注意,具体可以参考xgb和lgb的官方API
4.6 经验总结
在本节中,我们主要完成了建模与调参的工作,首先在建模的过程中通过划分数据集、交叉验证等方式对模型的性能进行评估验证
最后我们对模型进行调参,这部分介绍了贪心调参、网格搜索调参、贝叶斯调参共三种调参手段,重点使用贝叶斯调参对本次项目进行简单优化,大家在实际操作的过程中可以参考调参思路进行优化,不必拘泥于以上教程所写的具体实例。
<1> 终于深刻体会那句我们是炼丹的[调参]
<2> 数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已,那么感觉特征工程和模型调参都贼难,努力成为一个优秀的炼丹师
<3> 不知道为什么将最优的参数尝试弄在Task1的baseline,结果反向上分了害