区间最值问题,
倍增+动态规划的思想
适用于不更新节点且询问次数多
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
int maxn[50001][30], minn[50001][30];//i为起点,(1 << j)为区间长度
void init_st(int n);
int main()
{
int i, j;
int n, q;
int x, y;
scanf("%d %d", &n, &q);
for(i = 1; i <= n; ++i)//初始化
{
scanf("%d", &maxn[i][0]);
minn[i][0] = maxn[i][0];
}
init_st(n);
for(i = 1; i <= q; ++i)
{
scanf("%d %d", &x, &y);
if(y < x) swap(x, y);
int k = (int)(log(double(y - x + 1)) / log(2.0));//询问
int t1 = max(maxn[x][k], maxn[y - (1 << k) + 1][k]);
int t2 = min(minn[x][k], minn[y - (1 << k) + 1][k]);
printf("%d\n", t1 - t2);
}
return 0;
}
void init_st(int n)
{
int i, j;
for(j = 1; j <= (int)log2(n); ++j)
for(i = 1; i <= n; ++i)
{
int tag = i + (1 << j) - 1;
if(tag > n) continue;
maxn[i][j] = max(maxn[i][j - 1], maxn[i + (1 << (j - 1))][j - 1]);
minn[i][j] = min(minn[i][j - 1], minn[i + (1 << (j - 1))][j - 1]);
}
}