【RT-DETR有效改进】 主干篇 | 2024.5全新的移动端网络MobileNetV4改进RT-DETR(含MobileNetV4全部版本改进)

本文介绍了MobileNetV4在2024.5月的改进,它针对移动端进行了优化,引入了通用反向瓶颈(UIB)和Mobile MQA注意力模块。通过这些创新,模型在不牺牲准确性的同时提升了推理速度和计算效率。文章详细讲解了MobileNetV4的原理,提供完整代码和修改步骤,帮助读者理解并应用到RT-DETR中。

👑欢迎大家订阅本专栏,一起学习RT-DETR👑   

 一、本文介绍

本文给大家带来的改进机制是MobileNetV4,其发布时间是2024.5月。MobileNetV4是一种高度优化的神经网络架构,专为移动设备设计。它最新的改动总结主要有两点,采用了通用反向瓶颈(UIB)和针对移动加速器优化的Mobile MQA注意力模块(一种全新的注意力机制)。这些创新有助于在不牺牲准确性的情况下,显著提高推理速度和计算效率。MobileNetV4是一种移动端的网络。

推荐指数:⭐⭐⭐⭐

涨点效果:⭐⭐⭐⭐

 专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR

目录

 一、本文介绍

二、Swin Transformer原理

2.1 Swin Transformer的基本原理

2.2 层次化特征映射

2.3 局部自注意力计算

2.4 移动窗口自注意力

2.5 移动窗口分区

三、 Swin Transformer的完整代码

四、手把手教你添加Swin Transformer网络结构

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四

4.5 修改五

4.6 修改六

4.7 修改七 

4.8 修改八

4.9 必备修改!

4.10 RT-DETR不能打印计算量问题的解决

4.11 可选修改

五、Swin Transformer的yaml文件

5.1 yaml文件

5.2 运行文件

5.3 成功训练截图

六、全文总结


二、MobileNetV4原理

官方论文地址: 官方论文地址点击此处即可跳转

官方代码地址: 官方代码地址点击此处即可跳转

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值