YOLOv9改进策略 | 添加注意力篇 | LSKAttention大核注意力机制助力极限涨点 (附多个位置添加教程)

本文介绍了LSKAttention大核注意力机制,它将2D卷积核分解为1D卷积核,降低YOLOv9的计算复杂性和内存占用。通过在YOLOv9中添加LSKAttention,实验证明能提升目标检测的mAP。详细阐述了LSKAttention的原理、核心代码,并提供了详细的添加步骤和多个yaml配置文件供读者参考训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 一、本文介绍 

本文给大家带来的改进机制是LSKAttention大核注意力机制应用于YOLOv9。它的主要思想是将深度卷积层的2D卷积核分解为水平和垂直1D卷积核,减少了计算复杂性和内存占用。接着,我们介绍将这一机制整合到YOLOv9的方法,以及它如何帮助提高处理大型数据集和复杂视觉任务的效率和准确性。本文还将提供代码实现细节和使用方法展示这种改进对目标检测等方面的效果。通过实验YOLOv5在整合LSKAttention机制后,亲测mAP有显著提高(下面会附上改进LSKAttention机制和基础版本的结果对比图)。

专栏地址:YOLOv9有效涨点专栏-持续复现各种顶会内容-有效涨点-全网改进最全的专栏 

目录

 一、本文介绍 

二、LSKAttention的机制原理 

三、LSKAttention的核心代码

四、手把手教你将LSKAttention添加到你的网络结构中

4.1 LSKAttention添加步骤

4.1.1 修改一

4.1.2 修改二

4.1.3 修改三 

4.1.4 修改四

4.2 LSKAttention的yaml文件和训练截图

4.2.1 LSKAttention的yaml版本一(推荐)

4.2.2 LSKAttention的yaml版本二

4.2.3 LSKAttention的yaml版本三

Yolov8EMA注意力机制是指在Yolov8目标检测算法中使用EMA(Exponential Moving Average)注意力机制来提升性能的一种改进方法。该方法是基于EMA注意力机制的论文翻译而来,并将EMA应用于Yolov8中。通过在自己的数据集上测试,该方法取得了一些性能提升。与其他注意力方法通过简单平均方法聚合学习到的注意力权重不同,Yolov8EMA注意力机制采用了跨空间学习方法,通过融合并行子网络的注意力图来突出所有像素的全局上下文。这种多尺度的注意力机制在性能提升方面表现出更好的效果。因此,Yolov8EMA注意力机制是一种高效的多尺度注意力机制,可以用于改进目标检测算法。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [YoloV8改进策略:新出炉的EMA注意力机制助力YoloV8更加强](https://blog.youkuaiyun.com/m0_47867638/article/details/131356975)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [YOLOV8改进:CVPR 2023 | 在C2f模块不同位置添加EMA注意力机制,有效](https://blog.youkuaiyun.com/m0_51530640/article/details/131412297)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值