YOLOv9改进策略 | 添加注意力 | MSDA多尺度空洞注意力(附多位置添加教程 + 代码解析)

本文深入探讨MSDA(多尺度空洞注意力)机制,其在YOLOv9中提升模型性能,尤其在小目标检测中显著提高mAP。通过线性投影和多尺度SWDA,MSDA实现多尺度特征提取和稀疏性利用,减少了计算冗余。文章提供详细的手动添加MSDA模块教程,并分享了训练过程和yaml配置文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 一、本文介绍

本文给大家带来的改进机制是MSDA(多尺度空洞注意力)发表于今年的中科院一区(算是国内计算机领域的最高期刊了),其全称是"DilateFormer: Multi-Scale Dilated Transformer for Visual Recognition"。MSDA的主要思想是通过线性投影得到特征图X的相应查询、键和值。然后,将特征图的通道分成n个不同的头部,并在不同的头部中以不同的扩张率执行多尺度SWDA来提高模型的处理效率和检测精度。亲测在小目标检测和大尺度目标检测的数据集上都有大幅度的涨点效果(mAP直接涨了大概有0.06左右)。最后本文会手把手教你添加MSDA模块到网络结构中。

 专栏地址:YOLOv9有效涨点专栏-持续复现各种顶会内容-有效涨点-全网改进最全的专栏 

目录

 一、本文介绍

二、MSDA框架原理

三、MSDA核心代码

四、手把手教你添加MSDA模块

4.1 MSDA添加步骤

4.1.1 修改一

4.1.2 修改二

4.1.3 修改三 

4.1.4 修改四

4.2 MSDA的yaml文件和训练截图

4.2.1 MSDA的yaml版本一(推荐)

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值