YOLOv5改进 | 注意力篇 | 添加MLCA混合局部通道注意力(轻量化注意力机制)

本文介绍了如何在YOLOv5中应用MLCA(混合局部通道注意力)以提高目标检测的精度。MLCA结合局部和全局特征,以及通道和空间信息,以轻量级方式提升模型性能。文中详细阐述了MLCA的基本框架原理,核心代码,并手把手指导读者添加MLCA到YOLOv5模型中,包括四个修改步骤。同时提供了不同版本的yaml配置文件和训练过程截图供参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 一、本文介绍

本文带来的改进机制是MLCA(Mixed local channel attention)翻译来就是混合局部通道注意力,它结合了局部和全局特征以及通道和空间特征的信息,根据文章的内容来看他是一个轻量化的注意力机制,能够在增加少量参数量的情况下从而大幅度的提高检测精度(论文中是如此描述的),根据我的实验内容来看,该注意力机制确实参数量非常少,效果也算不错,而且官方的代码中提供了二次创新的思想和视频讲解非常推荐大家观看。同时在开始讲解之前推荐一下我的专栏,本专栏的内容支持(分类、检测、分割、追踪、关键点检测),专栏目前为限时折扣,欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。

专栏目录:YOLOv5改进有效涨点目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

目录

 一、本文介绍

二、MLCA的基本框架原理

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值