题意:
N个数,两个玩家取数玩,P1先取,P2后取,问在两个玩家都“best possible”的情况下,分别能得到的和是多少。
思路:
f[i][j]为取完第i~j个数之后P1取得的最大和。
那么如果轮到P1取,那么f[i][j] = max(a[i]+f[i+1][j], a[j]+f[i][j-1])
如果轮到P2取,那么f[i][j] = min(f[i+1][j], f[i][j-1])
这样P1取得的和就是f[1][N],P2取得的和就是sum-f[1][N]
code:
/*
ID: jasison2
LANG: C++
TASK: game1
*/
#include <cstdio>
#include <fstream>
#include <cstring>
using namespace std;
#define N 105
#define max(a,b) (a)<(b)?(b):(a)
#define min(a,b) (a)<(b)?(a):(b)
int n, m[N], f[N][N], sum;
void input()
{
scanf("%d", &n);
sum = 0;
for (int i = 1; i <= n; ++ i)
{
scanf("%d", &m[i]);
sum += m[i];
}
}
void calc()
{
if (n & 1)
for (int i = 1; i <= n; ++ i)
f[i][i] = m[i];
else
for (int i = 1; i <= n; ++ i)
f[i][i] = 0;
for (int i = 1; i < n; ++ i)
{
if ((n-i) & 1)
for (int j = 1; j+i <= n; ++ j)
f[j][j+i] = max(m[j]+f[j+1][j+i], m[j+i]+f[j][j+i-1]);
else
for (int j = 1; j+i <= n; ++ j)
f[j][j+i] = min(f[j][j+i-1], f[j+1][j+i]);
}
}
void output()
{
printf("%d %d\n", f[1][n], sum-f[1][n]);
}
int main()
{
freopen("game1.in","r",stdin);
freopen("game1.out","w",stdout);
input();
calc();
output();
}