
打开VS2019,新建工程,Project -> Properties:

VC++ Directories -> Include Directories,添加解压文件中的“include”目录:

Linker -> General -> Additional Library Directories,添加解压文件中的“lib”目录:

Linker -> Input -> Additional Dependencies,输入这4个.lib文件名:glfw3.lib,glew32.lib,soil2-debug.lib 和 opengl32.lib(最后一个已作为标准 WindowsSDK 的一部分提供)。

对“调试”和“发布”模式的项目属性都进行上述更改后,就可以开始创建模板了。创建模板通过进入“项目”菜单并选择“导出模板”来完成。选择“项目”模板,并为模板提供有意义的名称,例如“ OpenGL project”。

安装库并设置好自定义模板后,创建一个新的 OpenGL C++项目就很简单了。
下拉菜单允许你指定“ x86”或“ x64”——选择“ x86”。![]()
将解压文件的根目录中的“glew32.dll”文件复制到“Release”或“Debug”文件夹中,具体取决于所需的解决方案配置。
在开发、测试和调试应用程序之后,程序可以作为一个单独的可执行文件进行部署。部署时需要在“发布”模式下构建项目,然后将以下文件放在同一个文件夹中:
- 应用程序使用的所有着色器文件。
- 应用程序使用的所有纹理图像和模型文件。
环境配置好了,运行一个完整的示例,来检测环境是否真的配置OK:

// EXE.cpp
#include <GL\glew.h>
#include <GLFW\glfw3.h>
#include <string>
#include <iostream>
#include <fstream>
#include <cmath>
#include <glm\glm.hpp>
#include <glm\gtc\type_ptr.hpp>
#include <glm\gtc\matrix_transform.hpp>
using namespace std;
#define numVAOs 1
#define numVBOs 2
float cameraX, cameraY, cameraZ;
float cubeLocX, cubeLocY, cubeLocZ;
GLuint renderingProgram;
GLuint vao[numVAOs];
GLuint vbo[numVBOs];
GLuint mvLoc, projLoc;
int width, height;
float aspect;
glm::mat4 pMat, vMat, mMat, mvMat;
string readShaderFile(const char* filePath) {
string content;
ifstream fileStream(filePath, ios::in);
string line = "";
while (!fileStream.eof()) {
getline(fileStream, line);
content.append(line + "\n");
}
fileStream.close();
return content;
}
GLuint prepareShader(int shaderTYPE, const char* shaderPath) {
GLint shaderCompiled;
string shaderStr = readShaderFile(shaderPath);
const char* shaderSrc = shaderStr.c_str();
GLuint shaderRef = glCreateShader(shaderTYPE);
glShaderSource(shaderRef, 1, &shaderSrc, NULL);
glCompileShader(shaderRef);
return shaderRef;
}
int finalizeShaderProgram(GLuint sprogram) {
glLinkProgram(sprogram);
return sprogram;
}
GLuint createShaderProgram(const char* vp, const char* fp) {
GLuint vShader = prepareShader(GL_VERTEX_SHADER, vp);
GLuint fShader = prepareShader(GL_FRAGMENT_SHADER, fp);
GLuint vfprogram = glCreateProgram();
glAttachShader(vfprogram, vShader);
glAttachShader(vfprogram, fShader);
finalizeShaderProgram(vfprogram);
return vfprogram;
}
void setupVertices(void) {
float vertexPositions[108] = {
-1.0f, 1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 1.0f, -1.0f, -1.0f,
1.0f, -1.0f, -1.0f, 1.0f, 1.0f, -1.0f, -1.0f, 1.0f, -1.0f,
1.0f, -1.0f, -1.0f, 1.0f, -1.0f, 1.0f, 1.0f, 1.0f, -1.0f,
1.0f, -1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, -1.0f,
1.0f, -1.0f, 1.0f, -1.0f, -1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
-1.0f, -1.0f, 1.0f, -1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
-1.0f, -1.0f, 1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 1.0f, 1.0f,
-1.0f, -1.0f, -1.0f, -1.0f, 1.0f, -1.0f, -1.0f, 1.0f, 1.0f,
-1.0f, -1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 1.0f, -1.0f, -1.0f,
1.0f, -1.0f, -1.0f, -1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 1.0f,
-1.0f, 1.0f, -1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 1.0f, -1.0f, 1.0f, -1.0f
};
glGenVertexArrays(1, vao);
glBindVertexArray(vao[0]);
glGenBuffers(numVBOs, vbo);
glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertexPositions), vertexPositions, GL_STATIC_DRAW);
}
void init(GLFWwindow* window) {
renderingProgram = createShaderProgram("vertShader.glsl", "fragShader.glsl");
cameraX = 0.0f; cameraY = 0.0f; cameraZ = 8.0f;
cubeLocX = 0.0f; cubeLocY = -2.0f; cubeLocZ = 0.0f;
setupVertices();
}
void display(GLFWwindow* window, double currentTime) {
glClear(GL_DEPTH_BUFFER_BIT);
glUseProgram(renderingProgram);
mvLoc = glGetUniformLocation(renderingProgram, "mv_matrix");
projLoc = glGetUniformLocation(renderingProgram, "proj_matrix");
glfwGetFramebufferSize(window, &width, &height);
aspect = (float)width / (float)height;
pMat = glm::perspective(1.0472f, aspect, 0.1f, 1000.0f);
vMat = glm::translate(glm::mat4(1.0f), glm::vec3(-cameraX, -cameraY, -cameraZ));
mMat = glm::translate(glm::mat4(1.0f), glm::vec3(cubeLocX, cubeLocY, cubeLocZ));
mvMat = vMat * mMat;
glUniformMatrix4fv(mvLoc, 1, GL_FALSE, glm::value_ptr(mvMat));
glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(pMat));
glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);
glEnableVertexAttribArray(0);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glDrawArrays(GL_TRIANGLES, 0, 36);
}
int main(void) {
if (!glfwInit()) { exit(EXIT_FAILURE); }
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 4);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
GLFWwindow* window = glfwCreateWindow(600, 600, "Chapter 4 - program 1", NULL, NULL);
glfwMakeContextCurrent(window);
if (glewInit() != GLEW_OK) { exit(EXIT_FAILURE); }
glfwSwapInterval(1);
init(window);
while (!glfwWindowShouldClose(window)) {
display(window, glfwGetTime());
glfwSwapBuffers(window);
glfwPollEvents();
}
glfwDestroyWindow(window);
glfwTerminate();
exit(EXIT_SUCCESS);
}
// vertShader.glsl
#version 430
layout (location=0) in vec3 position;
uniform mat4 mv_matrix;
uniform mat4 proj_matrix;
void main(void) {
gl_Position = proj_matrix * mv_matrix * vec4(position,1.0);
}
// fragShader.glsl
#version 430
out vec4 color;
uniform mat4 mv_matrix;
uniform mat4 proj_matrix;
void main(void) {
color = vec4(1.0, 0.0, 0.0, 1.0);
}

运行程序,结果如下图(一个有透视效果的红色立方体):

至此,说明环境搭配完美成功!
本文详细指导如何配置Visual Studio 2019环境,以使用OpenGL和C++进行计算机图形学编程,包括添加库依赖、设置自定义模板,最终通过运行红立方体示例验证配置。
https://download.youkuaiyun.com/download/itzyjr/85031937
1364

被折叠的 条评论
为什么被折叠?



