71、Python 中的其他有趣内容

Python 中的其他有趣内容

1. 引言

在编程之旅中,我们已经学会了使用 Python 做许多有趣且有用的事情。不过,Python 还有很多特性等待我们去探索。接下来,我们将介绍一些 Python 中很酷的功能,这些功能虽不是理解编程或 Python 的必备知识,但能以有趣的方式帮助我们解决问题。

2. 数字相关内容

2.1 分数(Fractions)

2.1.1 分数的基本概念

有理数是可以表示为两个整数之比的数,例如分数 p/q(p 和 q 为整数且 q ≠ 0)。非有理数的实数称为无理数,如 π 或 √2。Python 的 fractions 模块提供了 Fraction 类来处理分数。

2.1.2 分数的构造

Fraction 类有多种构造方法:

from fractions import Fraction

# 提供分子和分母
half = Fraction(1, 2)
print(half)  # 输出: Fraction(1, 2)

also_half = Fraction(8, 16)
print(also_half)  # 输出: Fraction(1, 2)

# 提供单个整数,分母默认为 1
two = Fraction(2)
print(two)  # 输出: Fraction(2, 1)

# 提供浮点数
fourth = Fraction(0.25)
print(fourth)  # 输出: Fraction(1, 4)

import math
pi_fraction 
【3D应力敏感度分析拓扑优化】【基于p-范数全局应力衡量的3D敏感度分析】基于伴随方法的有限元分析和p-范数应力敏感度分析(Matlab代码实现)内容概要:本文档介绍了基于伴随方法的有限元分析与p-范数全局应力衡量的3D应力敏感度分析,并结合拓扑优化技术,提供了完整的Matlab代码实现方案。该方法通过有限元建模计算结构在载荷作用下的应力分布,采用p-范数对全局应力进行有效聚合,避免传统方法中应力约束过多的问题,进而利用伴随法高效求解设计变量对应力的敏感度,为结构优化提供关键梯度信息。整个流程涵盖了从有限元分析、应力评估到敏感度计算的核心环节,适用于复杂三维结构的轻量化与高强度设计。; 适合人群:具备有限元分析基础、拓扑优化背景及Matlab编程能力的研究生、科研人员与工程技术人员,尤其适合从事结构设计、力学仿真与多学科优化的相关从业者; 使用场景及目标:①用于实现高精度三维结构的应力约束拓扑优化;②帮助理解伴随法在敏感度分析中的应用原理与编程实现;③服务于科研复现、论文写作与工程项目中的结构性能提升需求; 阅读建议:建议读者结合有限元理论与优化算法知识,逐步调试Matlab代码,重点关注伴随方程的构建与p-范数的数值处理技巧,以深入掌握方法本质并实现个性化拓展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值