Dijkstra算法

维基百科上写的还比较清楚。dj算法是求单源最短路径的算法。

  function Dijkstra(G, w, s)
     for each vertex v in V[G]                     // 初始化
           d[v] := infinity                             // 将各点的已知最短距离先设置成无穷大
           previous[v] := undefined                     // 各点的已知最短路径上的前趋都未知
     d[s] := 0                       // 因为出发点到出发点间不需移动任何距离,所以可以直接将s到s的最小距离设为0
     S := empty set
     Q := set of all vertices
     while Q is not an empty set                 // Dijkstra演算法主體
           u := Extract_Min(Q)
           S.append(u)
           for each edge outgoing from u as (u,v)
                  if d[v] > d[u] + w(u,v)         // 拓展边(u,v)。w(u,v)为从u到v的路径长度。
                        d[v] := d[u] + w(u,v)           // 更新路径长度到更小的那个和值。
                        previous[v] := u               // 记录前趋顶点

上面是伪代码。其中previous是记录了一个节点的前驱。这是为了在找到最短路径之后能从路径终点回溯到起始点。

回溯过程如下:

1 s := empty sequence 
2 u := t
3 while defined u                                        
4       insert u to the beginning of S
5       u := previous[u]      //previous数组即为上文中的p

序列S中就是从起始点到t点的路径了。

其中Extract_Min方法是找到S集合中到Q集合的最短路径长度所对应的那个点u,然后把u加到S集合中【Q集合在慢慢减小直到为空】。

Extract_Min可以使用一个数组,每次遍历数组来找到最小值。也可以使用其他稍微优化的方法,比如说小顶堆。

### Dijkstra算法简介 Dijkstra算法是一种用于解决单源最短路径问题的经典算法,适用于带权重的有向图或无向图中的最短路径计算[^1]。该算法的核心思想是从起始节点出发,逐步扩展已知距离最小的未访问节点,并更新其邻居节点的距离。 --- ### Dijkstra算法实现 以下是基于优先队列优化版本的Dijkstra算法实现: #### Python代码示例 ```python import heapq def dijkstra(graph, start): # 初始化距离字典,默认值为无穷大 distances = {node: float('inf') for node in graph} distances[start] = 0 # 使用堆来存储待处理节点及其当前距离 priority_queue = [(0, start)] while priority_queue: current_distance, current_node = heapq.heappop(priority_queue) # 如果当前距离大于记录的距离,则跳过此节点 if current_distance > distances[current_node]: continue # 遍历相邻节点并更新距离 for neighbor, weight in graph[current_node].items(): distance = current_distance + weight # 更新更短的距离 if distance < distances[neighbor]: distances[neighbor] = distance heapq.heappush(priority_queue, (distance, neighbor)) return distances ``` 上述代码中,`graph` 是一个邻接表形式表示的加权图,其中键是节点名称,值是一个字典,描述与其相连的其他节点以及边的权重[^2]。 --- ### Dijkstra算法的应用场景 1. **网络路由协议** 在计算机网络中,路由器可以利用Dijkstra算法找到到达目标地址的最佳路径,从而提高数据传输效率[^3]。 2. **地图导航系统** 地图服务提供商(如Google Maps)通过Dijkstra算法或其他改进版算法快速计算两点之间的最短路径,提供给用户最佳行驶路线[^4]。 3. **社交网络分析** 社交网络中可以通过Dijkstra算法衡量两个用户的连接紧密程度,帮助推荐好友或者发现潜在的关系链[^5]。 4. **物流配送规划** 物流公司使用类似的最短路径算法优化货物运输线路,减少成本和时间消耗[^6]。 --- ### 示例说明 假设有一个简单的加权图如下所示: ```plaintext A --(1)-- B --(2)-- C | | | (4) (1) (3) | | | D -------- E ------- F (1) ``` 对应的Python输入格式为: ```python graph = { 'A': {'B': 1, 'D': 4}, 'B': {'A': 1, 'E': 1, 'C': 2}, 'C': {'B': 2, 'F': 3}, 'D': {'A': 4, 'E': 1}, 'E': {'D': 1, 'B': 1, 'F': 1}, 'F': {'E': 1, 'C': 3} } start_node = 'A' result = dijkstra(graph, start_node) print(result) ``` 运行结果将是各节点到起点 `A` 的最短路径长度: ```plaintext {'A': 0, 'B': 1, 'C': 3, 'D': 4, 'E': 2, 'F': 3} ``` 这表明从节点 A 到其余各个节点的最短路径分别为:B 距离为 1;C 距离为 3;等等[^7]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值