USACO-Section 1.3 Combination Lock(枚举)

介绍了一种用于破解特定类型组合锁的算法,该锁允许一定范围内的数值偏差。通过枚举所有可能接近两个预设组合(农场主设置及制造商默认组合)的设置来确定能打开锁的组合数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Combination Lock

Farmer John's cows keep escaping from his farm and causing mischief. To try and prevent them from leaving, he purchases a fancy combination lock to keep his cows from opening the pasture gate.

Knowing that his cows are quite clever, Farmer John wants to make sure they cannot easily open the lock by simply trying many different combinations. The lock has three dials, each numbered 1..N (1 <= N <= 100), where 1 and N are adjacent since the dials are circular. There are two combinations that open the lock, one set by Farmer John, and also a "master" combination set by the lock maker.

The lock has a small tolerance for error, however, so it will open even if the numbers on the dials are each within at most 2 positions of a valid combination.

For example, if Farmer John's combination is (1,2,3) and the master combination is (4,5,6), the lock will open if its dials are set to (1,3,5) (since this is close enough to Farmer John's combination) or to (2,4,8) (since this is close enough to the master combination). Note that (1,5,6) would not open the lock, since it is not close enough to any one single combination.

Given Farmer John's combination and the master combination, please determine the number of distinct settings for the dials that will open the lock. Order matters, so the setting (1,2,3) is distinct from (3,2,1).

PROGRAM NAME: combo

INPUT FORMAT:

Line 1:The integer N.
Line 2:Three space-separated integers, specifying Farmer John's combination.
Line 3:Three space-separated integers, specifying the master combination (possibly the same as Farmer John's combination).

SAMPLE INPUT (file combo.in):

50
1 2 3
5 6 7

INPUT DETAILS:

Each dial is numbered 1..50. Farmer John's combination is (1,2,3), and the master combination is (5,6,7).

OUTPUT FORMAT:

Line 1:The number of distinct dial settings that will open the lock.

SAMPLE OUTPUT (file combo.out):

249

SAMPLE OUTPUT EXPLANATION

Here's a list:

1,1,1  2,2,4  3,4,2  4,4,5  5,4,8  6,5,6  7,5,9  3,50,2  50,1,4 
1,1,2  2,2,5  3,4,3  4,4,6  5,4,9  6,5,7  7,6,5  3,50,3  50,1,5 
1,1,3  2,3,1  3,4,4  4,4,7  5,5,5  6,5,8  7,6,6  3,50,4  50,2,1 
1,1,4  2,3,2  3,4,5  4,4,8  5,5,6  6,5,9  7,6,7  3,50,5  50,2,2 
1,1,5  2,3,3  3,4,6  4,4,9  5,5,7  6,6,5  7,6,8  49,1,1  50,2,3 
1,2,1  2,3,4  3,4,7  4,5,5  5,5,8  6,6,6  7,6,9  49,1,2  50,2,4 
1,2,2  2,3,5  3,4,8  4,5,6  5,5,9  6,6,7  7,7,5  49,1,3  50,2,5 
1,2,3  2,4,1  3,4,9  4,5,7  5,6,5  6,6,8  7,7,6  49,1,4  50,3,1 
1,2,4  2,4,2  3,5,5  4,5,8  5,6,6  6,6,9  7,7,7  49,1,5  50,3,2 
1,2,5  2,4,3  3,5,6  4,5,9  5,6,7  6,7,5  7,7,8  49,2,1  50,3,3 
1,3,1  2,4,4  3,5,7  4,6,5  5,6,8  6,7,6  7,7,9  49,2,2  50,3,4 
1,3,2  2,4,5  3,5,8  4,6,6  5,6,9  6,7,7  7,8,5  49,2,3  50,3,5 
1,3,3  3,1,1  3,5,9  4,6,7  5,7,5  6,7,8  7,8,6  49,2,4  50,4,1 
1,3,4  3,1,2  3,6,5  4,6,8  5,7,6  6,7,9  7,8,7  49,2,5  50,4,2 
1,3,5  3,1,3  3,6,6  4,6,9  5,7,7  6,8,5  7,8,8  49,3,1  50,4,3 
1,4,1  3,1,4  3,6,7  4,7,5  5,7,8  6,8,6  7,8,9  49,3,2  50,4,4 
1,4,2  3,1,5  3,6,8  4,7,6  5,7,9  6,8,7  1,50,1 49,3,3  50,4,5 
1,4,3  3,2,1  3,6,9  4,7,7  5,8,5  6,8,8  1,50,2 49,3,4  49,50,1
1,4,4  3,2,2  3,7,5  4,7,8  5,8,6  6,8,9  1,50,3 49,3,5  49,50,2
1,4,5  3,2,3  3,7,6  4,7,9  5,8,7  7,4,5  1,50,4 49,4,1  49,50,3
2,1,1  3,2,4  3,7,7  4,8,5  5,8,8  7,4,6  1,50,5 49,4,2  49,50,4
2,1,2  3,2,5  3,7,8  4,8,6  5,8,9  7,4,7  2,50,1 49,4,3  49,50,5
2,1,3  3,3,1  3,7,9  4,8,7  6,4,5  7,4,8  2,50,2 49,4,4  50,50,1
2,1,4  3,3,2  3,8,5  4,8,8  6,4,6  7,4,9  2,50,3 49,4,5  50,50,2
2,1,5  3,3,3  3,8,6  4,8,9  6,4,7  7,5,5  2,50,4 50,1,1  50,50,3
2,2,1  3,3,4  3,8,7  5,4,5  6,4,8  7,5,6  2,50,5 50,1,2  50,50,4
2,2,2  3,3,5  3,8,8  5,4,6  6,4,9  7,5,7  3,50,1 50,1,3  50,50,5
2,2,3  3,4,1  3,8,9  5,4,7  6,5,5  7,5,8

每个密码数字误差在2以内的数字最多有5个,2个密码则最多有250种结果,所以每次先找出这符合要求的数字,然后枚举即可


/*
ID: your_id_here
PROG: combo
LANG: C++
*/
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;
int i,j,k,ans,n,num[105],f[3],maybe[3][5];
bool used[105][105][105];//used[i][j][k]表示这样的组合是否出现过

void cal() {
    if(n==1) {//当n为1时,不满足以下的方法,特判结果为1返回
        ans=1;
        return ;
    }
    for(i=0;i<3;++i) {//找3个密码数字符合要求的
        maybe[i][0]=f[i]-2<=0?n+f[i]-2:f[i]-2;
        maybe[i][1]=f[i]-1==0?n:f[i]-1;
        maybe[i][2]=f[i];
        maybe[i][3]=f[i]+1>n?1:f[i]+1;
        maybe[i][4]=f[i]+2>n?f[i]-n+2:f[i]+2;
    }
    for(i=0;i<5;++i)
        for(j=0;j<5;++j)
            for(k=0;k<5;++k)
                if(!used[maybe[0][i]][maybe[1][j]][maybe[2][k]]) {
                    used[maybe[0][i]][maybe[1][j]][maybe[2][k]]=true;
                    ++ans;
                }
}

int main() {
    freopen("combo.in","r",stdin);
    freopen("combo.out","w",stdout);
    while(1==scanf("%d",&n)) {
        memset(used,false,sizeof(used));
        ans=0;
        scanf("%d%d%d",f,f+1,f+2);
        cal();
        scanf("%d%d%d",f,f+1,f+2);
        cal();
        printf("%d\n",ans);
    }
    return 0;
}


### USACO 1327 Problem Explanation USACO 1327涉及的是一个贪心算法中的区间覆盖问题。具体来说,这个问题描述了一组奶牛可以工作的班次范围,并要求找出最少数量的奶牛来完全覆盖所有的班次。 对于此类问题的一个有效方法是采用贪心策略[^1]。首先按照区间的结束时间从小到大排序这些工作时间段;如果结束时间相同,则按开始时间从早到晚排列。接着遍历这个有序列表,在每一步都尽可能选择最早能完成当前未被覆盖部分的工作时段。通过这种方式逐步构建最终解集直到所有的时间段都被覆盖为止。 为了提高效率并防止超时错误,建议使用`scanf()`函数代替标准输入流操作符`cin`来进行数据读取处理[^2]。 ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; struct Interval { int start; int end; }; bool compareIntervals(const Interval& i1, const Interval& i2) { return (i1.end < i2.end || (i1.end == i2.end && i1.start < i2.start)); } int main() { vector<Interval> intervals = {{1, 7}, {3, 6}, {6, 10}}; sort(intervals.begin(), intervals.end(), compareIntervals); int currentEnd = 0; int count = 0; for (const auto& interval : intervals) { if (interval.start > currentEnd) break; while (!intervals.empty() && intervals.front().start <= currentEnd) { if (intervals.front().end >= interval.end) { interval = intervals.front(); } intervals.erase(intervals.begin()); } currentEnd = interval.end; ++count; if (currentEnd >= 10) break; // Assuming total shift length is known. } cout << "Minimum number of cows needed: " << count << endl; } ``` 此代码片段展示了如何实现上述提到的方法解决该类问题。需要注意的是实际比赛中可能还需要考虑更多边界条件以及优化细节以满足严格的性能需求。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值