[FROM LUOGU]P2569 [SCOI2010]股票交易

P2569 [SCOI2010]股票交易

传送门

SOL
d p [ i ] [ j ] dp[i][j] dp[i][j]表示第 i i i天持有 j j j股的最大收益

30 p t s 30pts 30pts:朴素转移 O ( n 4 ) O(n^4) O(n4)
不买卖: d p [ i ] [ j ] = d p [ i − 1 ] [ j ] dp[i][j]=dp[i-1][j] dp[i][j]=dp[i1][j]
买:如果是第一次买: d p [ i ] [ j ] = − j ∗ a p [ i ] ( 0 < = j < = a s [ i ] ) dp[i][j]=-j*ap[i](0<=j<=as[i]) dp[i][j]=jap[i](0<=j<=as[i])
否则: d p [ i ] [ j ] = d p [ i − k ] [ j − t ] − t ∗ a p [ i ] ( k > = m a x ( i − w − 1 , 0 ) , 0 < = t < = a s [ i ] ) dp[i][j]=dp[i-k][j-t]-t*ap[i](k>=max(i-w-1,0),0<=t<=as[i]) dp[i][j]=dp[ik][jt]tap[i](k>=max(iw1,0),0<=t<=as[i])
卖: d p [ i ] [ j ] = d p [ i − k ] [ j + t ] + t ∗ b p [ i ] ( k > = m a x ( i − w − 1 , 0 ) , 0 < = t < = b s [ i ] ) dp[i][j]=dp[i-k][j+t]+t*bp[i](k>=max(i-w-1,0),0<=t<=bs[i]) dp[i][j]=dp[ik][j+t]+tbp[i](k>=max(iw1,0),0<=t<=bs[i])
上述三者取 M a x Max Max

50 p t s 50pts 50pts O ( n 3 ) O(n^3) O(n3)
考虑到有些天可以选择不买,于是 i i i直接由 i − w − 1 i-w-1 iw1转移过来即可

100 p t s 100pts 100pts O ( n 2 ) O(n^2) O(n2)
考虑到会取 m a x max max,自然想到用单调队列优化
买: d p [ i ] [ j ] = m a x ( d p [ i − w − 1 ] [ j − t ] − t ∗ a p [ i ] ) ( 0 < = t < = a s [ i ] ) dp[i][j]=max(dp[i-w-1][j-t]-t*ap[i])(0<=t<=as[i]) dp[i][j]=max(dp[iw1][jt]tap[i])(0<=t<=as[i])
k = j − t k=j-t k=jt
d p [ i ] [ j ] = m a x ( d p [ i − w − 1 ] [ k ] − ( j − k ) ∗ a p [ i ] ) = m a x ( d p [ i − w − 1 ] [ k ] + k ∗ a p [ i ] ) − j ∗ a p [ i ] dp[i][j]=max(dp[i-w-1][k]-(j-k)*ap[i])=max(dp[i-w-1][k]+k*ap[i])-j*ap[i] dp[i][j]=max(dp[iw1][k](jk)ap[i])=max(dp[iw1][k]+kap[i])jap[i]
卖: d p [ i ] [ j ] = m a x ( d p [ i − w − 1 ] [ j + t ] + t ∗ b p [ i ] 0 ( 0 < = t < = b s [ i ] ) dp[i][j]=max(dp[i-w-1][j+t]+t*bp[i]0(0<=t<=bs[i]) dp[i][j]=max(dp[iw1][j+t]+tbp[i]0(0<=t<=bs[i])
k = j + t k=j+t k=j+t
d p [ i ] [ j ] = m a x ( d p [ i − w − 1 ] [ k ] + ( k − j ) ∗ b p [ i ] ) = m a x ( d p [ i − w − 1 ] [ k ] + k ∗ b p [ i ] ) − j ∗ b p [ i ] dp[i][j]=max(dp[i-w-1][k]+(k-j)*bp[i])=max(dp[i-w-1][k]+k*bp[i])-j*bp[i] dp[i][j]=max(dp[iw1][k]+(kj)bp[i])=max(dp[iw1][k]+kbp[i])jbp[i]

代码:

#include<bits/stdc++.h>
using namespace std;
#define re register
inline char nc(){
	static char buf[10000],*p1=buf,*p2=buf;
	return p1==p2&&(p2=(p1=buf)+fread(buf,1,10000,stdin),p1==p2)?EOF:*p1++;
}
inline int rd(){
	int re data=0;static char ch=0;ch=nc();
	while(!isdigit(ch))ch=nc();
	while(isdigit(ch))data=(data<<1)+(data<<3)+(ch^48),ch=nc();
	return data;
}
template<typename T>inline void chmax(T &a,T b){return a>b?a:b;}
const int N=2005;
int ap[N],bp[N],dp[N][N],ans,as[N],bs[N],q[N],l,r,t,w,m;
signed main(){
	t=rd(),m=rd(),w=rd();
	for(int re i=1;i<=t;++i)ap[i]=rd(),bp[i]=rd(),as[i]=rd(),bs[i]=rd();
	memset(dp,0xb3,sizeof(dp)),dp[0][0]=0; 
	for(int re i=1;i<=t;++i){
		for(int re j=0;j<=as[i];++j)dp[i][j]=-j*ap[i];
		for(int re j=0;j<=m;++j)dp[i][j]=max(dp[i][j],dp[i-1][j]);
		if(i<=w+1)continue;
		l=1,r=0;
		for(int re j=0;j<=m;++j){
		int re k=i-w-1;
		while(l<=r&&q[l]<j-as[i])++l;
		while(l<=r&&dp[k][j]+j*ap[i]>dp[k][q[r]]+q[r]*ap[i])--r;
		q[++r]=j,dp[i][j]=max(dp[i][j],dp[k][q[l]]-ap[i]*(j-q[l]));
		}
		l=1,r=0;
		for(int re j=m;j>=0;--j){
		int re k=i-w-1;
		while(l<=r&&q[l]>j+bs[i])++l;
		while(l<=r&&dp[k][j]+j*bp[i]>dp[k][q[r]]+q[r]*bp[i])--r;
		q[++r]=j,dp[i][j]=max(dp[i][j],dp[k][q[l]]+bp[i]*(q[l]-j));
		}
	}
	for(int re j=0;j<=m;++j)ans=max(ans,dp[t][j]);
	printf("%d",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值