从VGGNet拓展出来的
import tensorflow as tf import os import pickle import numpy as np def load_data(filename): """read data from data file.""" with open(filename, 'rb') as f: data = pickle.load(f, encoding='bytes') return data[b'data'], data[b'labels'] # tensorflow.Dataset. class CifarData: def __init__(self, filenames, need_shuffle): all_data = [] all_labels = [] for filename in filenames: data, labels = load_data(filename) all_data.append(data) all_labels.append(labels) self._data = np.vstack(all_data) self._data = self._data / 127.5 - 1 self._labels = np.hstack(all_labels) print(self._data.shape) print(self._labels.shape) self._num_examples = self._data.shape[0] self._need_shuffle = need_shuffle self._indicator = 0 if self._need_shuffle: self._shuffle_data() def _shuffle_data(self): # [0,1,2,3,4,5] -> [5,3,2,4,0,1] p = np.random.permutation(self._num_examples) self._data = self._data[p] self._labels = self._labels[p] def next_batch(self, batch_size): """return batch_size examples as a batch.""" end_indicator = self._indicator + batch_size if end_indicator > self._num_examples: if self._need_shuffle: self._shuffle_data() self._indicator = 0 end_indicator = batch_size else: raise Exception("have no more examples") if end_indicator > self._num_examples: raise Exception("batch size is larger than all examples") batch_data = self._data[self._indicator: end_indicator] batch_labels = self._labels[self._indicator: end_indicator] self._indicator = end_indicator return batch_data, batch_labels CIFAR_DIR = "dataset/cifar-10-batches-py" print(os.listdir(CIFAR_DIR)) train_filenames = [os.path.join(CIFAR_DIR, 'data_batch_%d' % i) for i in range(1, 6)] test_filenames = [os.path.join(CIFAR_DIR, 'test_batch')] train_data = CifarData(train_filenames, True) test_data = CifarData(test_filenames, False) def inception_block(x, output_channel_for_each_path, name): """inception block implementation""" """ Args: - x: - output_channel_for_each_path: eg: [10, 20, 5] - name: """ with tf.variable_scope(name): conv1_1 = tf.layers.conv2d(x, output_channel_for_each_path[0], (1, 1), strides=(1, 1), padding='same', activation=tf.nn.relu, name='conv1_1') conv3_3 = tf.layers.conv2d(x, output_channel_for_each_path[1], (3, 3), strides=(1, 1), padding='same', activation=tf.nn.relu, name='conv3_3') conv5_5 = tf.layers.conv2d(x, output_channel_for_each_path[2], (5, 5), strides=(1, 1), padding='same', activation=tf.nn.relu, name='conv5_5') max_pooling = tf.layers.max_pooling2d(x, (2, 2), (2, 2), name='max_pooling') max_pooling_shape = max_pooling.get_shape().as_list()[1:] input_shape = x.get_shape().as_list()[1:] width_padding = (input_shape[0] - max_pooling_shape[0]) // 2 height_padding = (input_shape[1] - max_pooling_shape[1]) // 2 padded_pooling = tf.pad(max_pooling, [[0, 0], [width_padding, width_padding], [height_padding, height_padding], [0, 0]]) concat_layer = tf.concat( [conv1_1, conv3_3, conv5_5, padded_pooling], axis=3) return concat_layer x = tf.placeholder(tf.float32, [None, 3072]) y = tf.placeholder(tf.int64, [None]) # [None], eg: [0,5,6,3] x_image = tf.reshape(x, [-1, 3, 32, 32]) # 32*32 x_image = tf.transpose(x_image, perm=[0, 2, 3, 1]) # conv1: 神经元图, feature_map, 输出图像 conv1 = tf.layers.conv2d(x_image, 32, # output channel number (3, 3), # kernel size padding='same', activation=tf.nn.relu, name='conv1') pooling1 = tf.layers.max_pooling2d(conv1, (2, 2), # kernel size (2, 2), # stride name='pool1') inception_2a = inception_block(pooling1, [16, 16, 16], name='inception_2a') inception_2b = inception_block(inception_2a, [16, 16, 16], name='inception_2b') pooling2 = tf.layers.max_pooling2d(inception_2b, (2, 2), # kernel size (2, 2), # stride name='pool2') inception_3a = inception_block(pooling2, [16, 16, 16], name='inception_3a') inception_3b = inception_block(inception_3a, [16, 16, 16], name='inception_3b') pooling3 = tf.layers.max_pooling2d(inception_3b, (2, 2), # kernel size (2, 2), # stride name='pool3') flatten = tf.layers.flatten(pooling3) y_ = tf.layers.dense(flatten, 10) loss = tf.losses.sparse_softmax_cross_entropy(labels=y, logits=y_) # y_ -> sofmax # y -> one_hot # loss = ylogy_ # indices predict = tf.argmax(y_, 1) # [1,0,1,1,1,0,0,0] correct_prediction = tf.equal(predict, y) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64)) with tf.name_scope('train_op'): train_op = tf.train.AdamOptimizer(1e-3).minimize(loss) init = tf.global_variables_initializer() batch_size = 20 train_steps = 10000 test_steps = 100 # train 10k: 74.65% with tf.Session() as sess: sess.run(init) for i in range(train_steps): batch_data, batch_labels = train_data.next_batch(batch_size) loss_val, acc_val, _ = sess.run( [loss, accuracy, train_op], feed_dict={ x: batch_data, y: batch_labels}) if (i + 1) % 100 == 0: print('[Train] Step: %d, loss: %4.5f, acc: %4.5f' % (i + 1, loss_val, acc_val)) if (i + 1) % 1000 == 0: test_data = CifarData(test_filenames, False) all_test_acc_val = [] for j in range(test_steps): test_batch_data, test_batch_labels \ = test_data.next_batch(batch_size) test_acc_val = sess.run( [accuracy], feed_dict={ x: test_batch_data, y: test_batch_labels }) all_test_acc_val.append(test_acc_val) test_acc = np.mean(all_test_acc_val) print('[Test ] Step: %d, acc: %4.5f' % (i + 1, test_acc))
InceptionNet tensorflow实战(CIFAR10数据集)
最新推荐文章于 2023-03-07 13:40:58 发布