problem:
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
Array Dynamic Programming
题意:紧挨着上一题,只不过对矩阵作了一点改变:矩阵的0代表可以通行,1代表不可通行,
求从起点(0,0)到终点(m-1,n-1)的路径总数
求从起点(0,0)到终点(m-1,n-1)的路径总数
thinking:
(1)blog.youkuaiyun.com/hustyangju/article/details/44829339 讨论了只能使用DP法
(2)加了条件限制,则DP算法也要修改:
1、边界条件要改变,一旦出现1,则随后的边界条件全部为0
2、矩阵中间出现1,则该位置的路径数置为0
code:
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
vector<vector<int> >::const_iterator con_it=obstacleGrid.begin();
int m=obstacleGrid.size();
int n=(*con_it).size();
vector<int> tmp(n,0);
vector<vector<int> > a(m,tmp);
bool flag=true;
for(int i=0;i<m;i++) //边界条件
{
if(obstacleGrid[i][0]==0 && flag)
a[i][0]=1;
else
{
a[i][0]=0;
flag=false;
}
}
flag=true;
for(int j=0;j<n;j++) //边界条件
{
if(obstacleGrid[0][j]==0 && flag)
a[0][j]=1;
else
{
a[0][j]=0;
flag=false;
}
}
for(int i = 1; i < m; i++)
for(int j = 1; j < n; j++)
{
if(obstacleGrid[i][j]==1) //出现障碍物,置0
a[i][j]=0;
else
a[i][j] = a[i-1][j] + a[i][j-1];
}
return a[m-1][n-1];
}
};