目录
- B B B组
-
- 5.设实矩阵 A \bm{A} A为 3 3 3阶正交矩阵,其元素 a 22 = 1 a_{22}=1 a22=1,又 3 3 3维列向量 α = [ 0 , 3 , 0 ] T \bm{\alpha}=[0,3,0]^\mathrm{T} α=[0,3,0]T,则 A − 1 α = \bm{A}^{-1}\bm{\alpha}= A−1α=______。
- 11.设 A = E + α β T \bm{A}=\bm{E}+\bm{\alpha\beta}^\mathrm{T} A=E+αβT,其中 α = [ a 1 , a 2 , ⋯ , a n ] T ≠ 0 , β = [ b 1 , b 2 , ⋯ , b n ] T ≠ 0 \bm{\alpha}=[a_1,a_2,\cdots,a_n]^\mathrm{T}\ne\bm{0},\bm{\beta}=[b_1,b_2,\cdots,b_n]^\mathrm{T}\ne\bm{0} α=[a1,a2,⋯,an]T=0,β=[b1,b2,⋯,bn]T=0,且 α T β = 2 \bm{\alpha}^\mathrm{T}\bm{\beta}=2 αTβ=2。
- 12.设 A \bm{A} A是 3 3 3阶矩阵, α 1 , α 2 , α 3 \bm{\alpha}_1,\bm{\alpha}_2,\bm{\alpha}_3 α1,α2,α3是 3 3 3维列向量, α 1 ≠ 0 \bm{\alpha}_1\ne\bm{0} α1=0,满足 A α 1 = 2 α 1 , A α 2 = α 1 + 2 α 2 , A α 3 = α 2 + 2 α 3 \bm{A\alpha}_1=2\bm{\alpha}_1,\bm{A\alpha}_2=\bm{\alpha}_1+2\bm{\alpha}_2,\bm{A\alpha}_3=\bm{\alpha}_2+2\bm{\alpha}_3 Aα1=2α1,Aα2=α1+2α2,Aα3=α2+2α3。
- 15.设 α = [ a 1 , a 2 , ⋯ , a n ] T ≠ 0 , A = α α T \bm{\alpha}=[a_1,a_2,\cdots,a_n]^\mathrm{T}\ne\bm{0},\bm{A}=\bm{\alpha\alpha}^\mathrm{T} α=[a1,a2,⋯,an]T=0,A=ααT,求可逆矩阵 P \bm{P} P,使 P − 1 A P = Λ \bm{P}^{-1}\bm{AP}=\bm{\Lambda} P−1AP=Λ。
- C C C组
- 写在最后
B B B组
5.设实矩阵 A \bm{A} A为 3 3 3阶正交矩阵,其元素 a 22 = 1 a_{22}=1 a22=1,又 3 3 3维列向量 α = [ 0 , 3 , 0 ] T \bm{\alpha}=[0,3,0]^\mathrm{T} α=[0,3,0]T,则 A − 1 α = \bm{A}^{-1}\bm{\alpha}= A−1α=______。
解 记 A = [ a 11 a 12 A 13 a 21 1 a 23 a 31 a 32 a 33 ] \bm{A}=\begin{bmatrix}a_{11}&a_{12}&A_{13}\\a_{21}&1&a_{23}\\a_{31}&a_{32}&a_{33}\end{bmatrix} A=⎣⎡a11a21a31a121a32A13a23a33⎦⎤,由于 A \bm{A} A为正交矩阵,故其每一行向量、每一列向量均为单位向量,于是有 a 12 2 + 1 2 + a 32 2 = 1 , a 21 2 + 1 2 + a 23 2 = 1 a_{12}^2+1^2+a_{32}^2=1,a_{21}^2+1^2+a_{23}^2=1 a122+12+a322=1,a212+12+a232=1,即有 a 12 = a 32 = a 21 = a 23 = 0 a_{12}=a_{32}=a_{21}=a_{23}=0 a12=a32=a21=a23=0。
又由正交矩阵的定义, A A T = E \bm{AA}^\mathrm{T}=\bm{E} AAT=E,有 A − 1 = A T \bm{A}^{-1}=\bm{A}^\mathrm{T} A−1=AT,故 A − 1 α = A T α = [ a 11 0 a 31 0 1 0 a 13 0 a 33 ] [ 0 3 0 ] = [ 0 3 0 ] \bm{A}^{-1}\bm{\alpha}=\bm{A}^\mathrm{T}\bm{\alpha}=\begin{bmatrix}a_{11}&0&a_{31}\\0&1&0\\a_{13}&0&a_{33}\end{bmatrix}\begin{bmatrix}0\\3\\0\end{bmatrix}=\begin{bmatrix}0\\3\\0\end{bmatrix} A−1α=ATα=⎣⎡a110a13010a310a33⎦⎤⎣⎡030⎦⎤=⎣⎡030⎦⎤。(这道题主要利用了正交矩阵的定义求解)
11.设 A = E + α β T \bm{A}=\bm{E}+\bm{\alpha\beta}^\mathrm{T} A=E+αβT,其中 α = [ a 1 , a 2 , ⋯ , a n ] T ≠ 0 , β = [ b 1 , b 2 , ⋯ , b n ] T ≠ 0 \bm{\alpha}=[a_1,a_2,\cdots,a_n]^\mathrm{T}\ne\bm{0},\bm{\beta}=[b_1,b_2,\cdots,b_n]^\mathrm{T}\ne\bm{0} α=[a1,a2,⋯,an]T=0,β=[b1,b2,⋯,bn]T=0,且 α T β = 2 \bm{\alpha}^\mathrm{T}\bm{\beta}=2 αTβ=2。
(1)求 A \bm{A} A的特征值和特征向量;
解 设
( E + α β T ) ξ = λ ξ . (1) (\bm{E}+\bm{\alpha\beta}^\mathrm{T})\bm{\xi}=\lambda\bm{\xi}.\tag{1} (E+αβT)ξ=λξ.(1)
( 1 ) (1) (1)式两端左乘 β T \bm{\beta}^\mathrm{T} βT,得 β T ( E + α β T ) ξ = ( β T + β T α β T ) ξ = ( 1 + β T α ) β T ξ = λ β T ξ \bm{\beta}^\mathrm{T}(\bm{E}+\bm{\alpha\beta}^\mathrm{T})\bm{\xi}=(\bm{\beta}^\mathrm{T}+\bm{\beta}^\mathrm{T}\bm{\alpha\beta}^\mathrm{T})\bm{\xi}=(1+\bm{\beta}^\mathrm{T}\bm{\alpha})\bm{\beta}^\mathrm{T}\bm{\xi}=\lambda\bm{\beta}^\mathrm{T}\bm{\xi} βT(E+αβT)ξ=(βT+βTαβT)ξ=(1+βTα)βTξ=λβTξ。
若 β T ξ ≠ 0 \bm{\beta}^\mathrm{T}\bm{\xi}\ne0 βTξ=0,则 λ = 1 + β T α = 3 \lambda=1+\bm{\beta}^\mathrm{T}\bm{\alpha}=3 λ=1+βTα=3;若 β T ξ = 0 \bm{\beta}^\mathrm{T}\bm{\xi}=0 βTξ=0,则由 ( 1 ) (1) (1)式,得 λ = 1 \lambda=1 λ=1。
当 λ = 1 \lambda=1 λ=1时, ( E − A ) x = − α β T x = − [ a 1 a 2 ⋮ a n ] [ b 1 , b 2 , ⋯ , b n ] x = 0 (\bm{E}-\bm{A})\bm{x}=-\bm{\alpha\beta}^\mathrm{T}\bm{x}=-\begin{bmatrix}a_1\\a_2\\\vdots\\a_n\end{bmatrix}[b_1,b_2,\cdots,b_n]\bm{x}=\bm{0} (E−A)x=−αβTx=−⎣⎢⎢⎢⎡a1a2⋮an⎦⎥⎥⎥⎤[b1,b2,⋯,bn]x=0,即 [ b 1 , b 2 , ⋯ , b n ] x = 0 [b_1,b_2,\cdots,b_n]\bm{x}=\bm{0} [b1,b2,⋯,bn]x=0,因 α ≠ 0 , β ≠ 0 \bm{\alpha}\ne\bm{0},\bm{\beta}\ne\bm{0} α=0,β=0,设 b 1 ≠ 0 b_1\ne0 b1=0,则 ξ 1 = [ b 2 , − b 1 , 0 , ⋯ , 0 ] T , ξ 2 = [ b 3 , 0 , − b 1 , ⋯ , 0 ] T , ⋯ , ξ n − 1 = [ b n , 0 , 0 , ⋯ , − b 1 ] T \bm{\xi}_1=[b_2,-b_1,0,\cdots,0]^\mathrm{T},\bm{\xi}_2=[b_3,0,-b_1,\cdots,0]^\mathrm{T},\cdots,\bm{\xi}_{n-1}=[b_n,0,0,\cdots,-b_1]^\mathrm{T} ξ1=[b2,−b1,0,⋯,0]T,ξ2=[b3,0,−b1,⋯,0]T,⋯,ξn−1=[bn,0,0,⋯,−b1]T;故属于 λ = 1 \lambda=1 λ=1特征值的全体特征向量为 k 1 ξ 1 + k 2 ξ 2 + ⋯ + k n − 1 ξ n − 1 k_1\bm{\xi}_1+k_2\bm{\xi}_2+\cdots+k_{n-1}\bm{\xi}_{n-1} k1ξ1+k2ξ2+⋯+kn−1ξn−1,其中 k 1 , k 2 , ⋯ , k n − 1 k_1,k_2,\cdots,k_{n-1} k1,k2,⋯,kn−1为不全为零的任意常数。
当 λ = 3 \lambda=3 λ=3时, ( 3 E − A ) x = ( 2 E − α β T ) x = 0 , ξ n = α = [ a 1 , a 2 , ⋯ , a n ] T (3\bm{E}-\bm{A})\bm{x}=(2\bm{E}-\bm{\alpha\beta}^\mathrm{T})\bm{x}=\bm{0},\bm{\xi}_n=\bm{\alpha}=[a_1,a_2,\cdots,a_n]^\mathrm{T} (3E−A)x=(2E−αβT)x=0,ξn=α=[a1,a2,⋯,an