李永乐数学基础过关660题概率论填空题

目录

450.设随机变量 X X X Y Y Y相互独立,且均服从正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2),则 P { max ⁡ ( X , Y ) > μ } − P { min ⁡ ( X , Y ) < μ } = P\{\max(X,Y)>\mu\}-P\{\min(X,Y)<\mu\}= P{max(X,Y)>μ}P{min(X,Y)<μ}=______.


P { max ⁡ ( X , Y ) > μ } − P { min ⁡ ( X , Y ) < μ } = 1 − P { max ⁡ ( X , Y ) ⩽ μ } − [ 1 − P { min ⁡ ( X , Y ) ⩽ μ } ] = − P { max ⁡ ( X , Y ) ⩽ μ } + P { min ⁡ ( X , Y ) ⩽ μ } = − P { X ⩽ μ , Y ⩽ μ } + P { X ⩾ μ , Y ⩾ μ } = − P { X ⩽ μ } P { Y ⩽ μ } + P { X ⩾ μ } P { Y ⩾ μ } = 0. \begin{aligned} &P\{\max(X,Y)>\mu\}-P\{\min(X,Y)<\mu\}\\ &=1-P\{\max(X,Y)\leqslant\mu\}-[1-P\{\min(X,Y)\leqslant\mu\}]\\ &=-P\{\max(X,Y)\leqslant\mu\}+P\{\min(X,Y)\leqslant\mu\}\\ &=-P\{X\leqslant\mu,Y\leqslant\mu\}+P\{X\geqslant\mu,Y\geqslant\mu\}\\ &=-P\{X\leqslant\mu\}P\{Y\leqslant\mu\}+P\{X\geqslant\mu\}P\{Y\geqslant\mu\}=0. \end{aligned} P{max(X,Y)>μ}P{min(X,Y)<μ}=1P{max(X,Y)μ}[1P{min(X,Y)μ}]=P{max(X,Y)μ}+P{min(X,Y)μ}=P{Xμ,Yμ}+P{Xμ,Yμ}=P{Xμ}P{Yμ}+P{Xμ}P{Yμ}=0.
这道题主要利用了概率的变换求解

457.已知随机变量 X 1 , X 2 X_1,X_2 X1,X2相互独立,且都服从正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2),( σ > 0 \sigma>0 σ>0)则 D ( X 1 X 2 ) = D(X_1X_2)= D(X1X2)=______.


D ( X 1 X 2 ) = E ( X 1 X 2 ) 2 − [ E ( X 1 X 2 ) ] 2 = E ( X 1 2 X 2 2 ) − [ E ( X 1 ) E ( X 2 ) ] 2 = ( σ 2 + μ 2 ) 2 − μ 4 = σ 2 ( σ 2 + 2 μ 2 ) . \begin{aligned} D(X_1X_2)&=E(X_1X_2)^2-[E(X_1X_2)]^2=E(X_1^2X_2^2)-[E(X_1)E(X_2)]^2\\ &=(\sigma^2+\mu^2)^2-\mu^4=\sigma^2(\sigma^2+2\mu^2). \end{aligned} D(X1X2)=E(X1X2)2[E(X1X2)]2=E(X12X22)[E(X1)E(X2)]2=(σ2+μ2)2μ4=σ2(σ2+2μ2).
这道题主要利用了已知量的代换求解

459.相互独立的随机变量 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn具有相同的方差 σ 2 > 0 \sigma^2>0 σ2>0,记 X ‾ = 1 n ∑ i = 1 n X i \overline{X}=\cfrac{1}{n}\sum^n\limits_{i=1}X_i X=n1i=1nXi,则 D ( X i − X ‾ ) = D(X_i-\overline{X})= D(XiX)=______.


D ( X i − X ‾ ) = D ( X 1 − 1 n ∑ i = 1 n ) = D ( n − 1 n X 1 − 1 n ∑ i = 2 n X i ) = ( n − 1 ) 2 n 2 D ( X 1 ) + 1 n 2 ∑ i = 2 n D ( X i ) = n − 1 n σ 2 . \begin{aligned} D(X_i-\overline{X})&=D\left(X_1-\cfrac{1}{n}\sum^n\limits_{i=1}\right)=D\left(\cfrac{n-1}{n}X_1-\cfrac{1}{n}\sum^n\limits_{i=2}X_i\right)\\ &=\cfrac{(n-1)^2}{n^2}D(X_1)+\cfrac{1}{n^2}\sum^n\limits_{i=2}D(X_i)=\cfrac{n-1}{n}\sigma^2. \end{aligned} D(XiX)=D(X1n1i=1n)=D(nn1X1n1i=2nXi)=n2(n1)2D(X1)+n21i=2nD(Xi)=nn1σ2.
这道题主要利用了统计量与估计量的关系求解

466.设随机变量 X 1 , X 2 , ⋯   , X n ( n > 1 ) X_1,X_2,\cdots,X_n(n>1) X1,X2,,Xn(n>1)独立同分布,且方差为 σ 2 > 0 \sigma^2>0 σ2>0,记 Y 1 = ∑ i = 2 n X i Y_1=\sum^n\limits_{i=2}X_i Y1=i=2nXi Y n = ∑ j = 1 n − 1 X j Y_n=\sum^{n-1}\limits_{j=1}X_j Yn=j=1n1Xj,则 Y 1 Y_1 Y1 Y n Y_n Yn的协方差 C o v ( Y 1 , Y n ) = \mathrm{Cov}(Y_1,Y_n)= Cov(Y1,Yn)=______.


C o v ( Y 1 , Y n ) = C o v ( ∑ i = 2 n X i , ∑ j = 1 n − 1 X j ) = ∑ i = 2 n ∑ j = 1 n − 1 C o v ( X i , X j ) = ∑ j = 1 n − 1 C o v ( X n , X j ) + ∑ i = 2 n − 1 ∑ j = 2 n − 1 C o v ( X i , X j ) + ∑ i = 2 n C o v ( X i , X 1 ) = ∑ k = 2 n − 1 C o v ( X k , X k ) = ( n − 2 ) σ 2 . \begin{aligned} \mathrm{Cov}(Y_1,Y_n)&=\mathrm{Cov}(\sum^n\limits_{i=2}X_i,\sum^{n-1}\limits_{j=1}X_j)=\sum^n\limits_{i=2}\sum^{n-1}\limits_{j=1}\mathrm{Cov}(X_i,X_j)\\ &=\sum^{n-1}\limits_{j=1}\mathrm{Cov}(X_n,X_j)+\sum^{n-1}\limits_{i=2}\sum^{n-1}\limits_{j=2}\mathrm{Cov}(X_i,X_j)+\sum^n\limits_{i=2}\mathrm{Cov}(X_i,X_1)\\ &=\sum^{n-1}\limits_{k=2}\mathrm{Cov}(X_k,X_k)=(n-2)\sigma^2. \end{aligned} Cov(Y1,Yn)=Cov(i=2nXi,j=1n1Xj)=i=2nj=1n1Cov(Xi,Xj)=j=1n1Cov(Xn,Xj)+i=2n1j=2n1Cov(Xi,Xj)+i=2nCov(Xi,X1)=k=2n1Cov(Xk,Xk)=(n2)σ2.
这道题主要利用了协方差的性质求解

470.设相互独立的随机变量 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn均服从标准正态分布,记 X ‾ = 1 n ∑ i = 1 n X i \overline{X}=\cfrac{1}{n}\sum^n\limits_{i=1}X_i X=n1i=1nXi,则随机变量 X 1 − X ‾ X_1-\overline{X} X1X服从的分布及参数为______.


X 1 − X ‾ = X 1 − 1 n ∑ i = 1 n X i = X 1 − 1 n X 1 − 1 n ∑ i = 2 n X i = n − 1 n X 1 − 1 n ∑ i = 1 n X i . X_1-\overline{X}=X_1-\cfrac{1}{n}\sum^n\limits_{i=1}X_i=X_1-\cfrac{1}{n}X_1-\cfrac{1}{n}\sum^n\limits_{i=2}X_i=\cfrac{n-1}{n}X_1-\cfrac{1}{n}\sum^n\limits_{i=1}X_i. X1X=X1n1i=1nXi=X1n1X1n1i=2nXi=nn1X1n1i=1nXi.
  所以 X 1 − X ‾ X_1-\overline{X} X1X是相互独立的 n n n个标准正态分布随机变量的线性组合, X 1 − X ‾ X_1-\overline{X} X1X必服从正态分布 N ( ∗ , ∗ ) N(*,*) N(,)
E ( X 1 − X ‾ ) = n − 1 n E ( X 1 ) − 1 n ∑ i = 1 n E ( X i ) = 0 , D ( X 1 − X ‾ ) = ( n − 1 ) 2 n 2 D ( X 1 ) − 1 n 2 ∑ i = 1 n D ( X i ) = ( n − 1 ) 2 n 2 + n − 1 n 2 = n 2 − n n 2 , X 1 − X ‾ ∼ N ( 0 , n − 1 n ) . E(X_1-\overline{X})=\cfrac{n-1}{n}E(X_1)-\cfrac{1}{n}\sum^n\limits_{i=1}E(X_i)=0,\\ D(X_1-\overline{X})=\cfrac{(n-1)^2}{n^2}D(X_1)-\cfrac{1}{n^2}\sum^n\limits_{i=1}D(X_i)=\cfrac{(n-1)^2}{n^2}+\cfrac{n-1}{n^2}=\cfrac{n^2-n}{n^2},\\ X_1-\overline{X}\sim N\left(0,\cfrac{n-1}{n}\right). E(X1X)=nn1E(X1)n1i=1nE(Xi)=0,D(X1X)=n2(n1)2D(X1)n21i=1nD(Xi)=n2(n1)2+n2n1=n2n2n,X1XN(0,nn1).
这道题主要利用了正态分布的性质求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值