目录
- 450.设随机变量 X X X与 Y Y Y相互独立,且均服从正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2),则 P { max ( X , Y ) > μ } − P { min ( X , Y ) < μ } = P\{\max(X,Y)>\mu\}-P\{\min(X,Y)<\mu\}= P{max(X,Y)>μ}−P{min(X,Y)<μ}=______.
- 457.已知随机变量 X 1 , X 2 X_1,X_2 X1,X2相互独立,且都服从正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2),( σ > 0 \sigma>0 σ>0)则 D ( X 1 X 2 ) = D(X_1X_2)= D(X1X2)=______.
- 459.相互独立的随机变量 X 1 , X 2 , ⋯ , X n X_1,X_2,\cdots,X_n X1,X2,⋯,Xn具有相同的方差 σ 2 > 0 \sigma^2>0 σ2>0,记 X ‾ = 1 n ∑ i = 1 n X i \overline{X}=\cfrac{1}{n}\sum^n\limits_{i=1}X_i X=n1i=1∑nXi,则 D ( X i − X ‾ ) = D(X_i-\overline{X})= D(Xi−X)=______.
- 466.设随机变量 X 1 , X 2 , ⋯ , X n ( n > 1 ) X_1,X_2,\cdots,X_n(n>1) X1,X2,⋯,Xn(n>1)独立同分布,且方差为 σ 2 > 0 \sigma^2>0 σ2>0,记 Y 1 = ∑ i = 2 n X i Y_1=\sum^n\limits_{i=2}X_i Y1=i=2∑nXi和 Y n = ∑ j = 1 n − 1 X j Y_n=\sum^{n-1}\limits_{j=1}X_j Yn=j=1∑n−1Xj,则 Y 1 Y_1 Y1和 Y n Y_n Yn的协方差 C o v ( Y 1 , Y n ) = \mathrm{Cov}(Y_1,Y_n)= Cov(Y1,Yn)=______.
- 470.设相互独立的随机变量 X 1 , X 2 , ⋯ , X n X_1,X_2,\cdots,X_n X1,X2,⋯,Xn均服从标准正态分布,记 X ‾ = 1 n ∑ i = 1 n X i \overline{X}=\cfrac{1}{n}\sum^n\limits_{i=1}X_i X=n1i=1∑nXi,则随机变量 X 1 − X ‾ X_1-\overline{X} X1−X服从的分布及参数为______.
- 写在最后
450.设随机变量 X X X与 Y Y Y相互独立,且均服从正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2),则 P { max ( X , Y ) > μ } − P { min ( X , Y ) < μ } = P\{\max(X,Y)>\mu\}-P\{\min(X,Y)<\mu\}= P{max(X,Y)>μ}−P{min(X,Y)<μ}=______.
解
P
{
max
(
X
,
Y
)
>
μ
}
−
P
{
min
(
X
,
Y
)
<
μ
}
=
1
−
P
{
max
(
X
,
Y
)
⩽
μ
}
−
[
1
−
P
{
min
(
X
,
Y
)
⩽
μ
}
]
=
−
P
{
max
(
X
,
Y
)
⩽
μ
}
+
P
{
min
(
X
,
Y
)
⩽
μ
}
=
−
P
{
X
⩽
μ
,
Y
⩽
μ
}
+
P
{
X
⩾
μ
,
Y
⩾
μ
}
=
−
P
{
X
⩽
μ
}
P
{
Y
⩽
μ
}
+
P
{
X
⩾
μ
}
P
{
Y
⩾
μ
}
=
0.
\begin{aligned} &P\{\max(X,Y)>\mu\}-P\{\min(X,Y)<\mu\}\\ &=1-P\{\max(X,Y)\leqslant\mu\}-[1-P\{\min(X,Y)\leqslant\mu\}]\\ &=-P\{\max(X,Y)\leqslant\mu\}+P\{\min(X,Y)\leqslant\mu\}\\ &=-P\{X\leqslant\mu,Y\leqslant\mu\}+P\{X\geqslant\mu,Y\geqslant\mu\}\\ &=-P\{X\leqslant\mu\}P\{Y\leqslant\mu\}+P\{X\geqslant\mu\}P\{Y\geqslant\mu\}=0. \end{aligned}
P{max(X,Y)>μ}−P{min(X,Y)<μ}=1−P{max(X,Y)⩽μ}−[1−P{min(X,Y)⩽μ}]=−P{max(X,Y)⩽μ}+P{min(X,Y)⩽μ}=−P{X⩽μ,Y⩽μ}+P{X⩾μ,Y⩾μ}=−P{X⩽μ}P{Y⩽μ}+P{X⩾μ}P{Y⩾μ}=0.
(这道题主要利用了概率的变换求解)
457.已知随机变量 X 1 , X 2 X_1,X_2 X1,X2相互独立,且都服从正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2),( σ > 0 \sigma>0 σ>0)则 D ( X 1 X 2 ) = D(X_1X_2)= D(X1X2)=______.
解
D
(
X
1
X
2
)
=
E
(
X
1
X
2
)
2
−
[
E
(
X
1
X
2
)
]
2
=
E
(
X
1
2
X
2
2
)
−
[
E
(
X
1
)
E
(
X
2
)
]
2
=
(
σ
2
+
μ
2
)
2
−
μ
4
=
σ
2
(
σ
2
+
2
μ
2
)
.
\begin{aligned} D(X_1X_2)&=E(X_1X_2)^2-[E(X_1X_2)]^2=E(X_1^2X_2^2)-[E(X_1)E(X_2)]^2\\ &=(\sigma^2+\mu^2)^2-\mu^4=\sigma^2(\sigma^2+2\mu^2). \end{aligned}
D(X1X2)=E(X1X2)2−[E(X1X2)]2=E(X12X22)−[E(X1)E(X2)]2=(σ2+μ2)2−μ4=σ2(σ2+2μ2).
(这道题主要利用了已知量的代换求解)
459.相互独立的随机变量 X 1 , X 2 , ⋯ , X n X_1,X_2,\cdots,X_n X1,X2,⋯,Xn具有相同的方差 σ 2 > 0 \sigma^2>0 σ2>0,记 X ‾ = 1 n ∑ i = 1 n X i \overline{X}=\cfrac{1}{n}\sum^n\limits_{i=1}X_i X=n1i=1∑nXi,则 D ( X i − X ‾ ) = D(X_i-\overline{X})= D(Xi−X)=______.
解
D
(
X
i
−
X
‾
)
=
D
(
X
1
−
1
n
∑
i
=
1
n
)
=
D
(
n
−
1
n
X
1
−
1
n
∑
i
=
2
n
X
i
)
=
(
n
−
1
)
2
n
2
D
(
X
1
)
+
1
n
2
∑
i
=
2
n
D
(
X
i
)
=
n
−
1
n
σ
2
.
\begin{aligned} D(X_i-\overline{X})&=D\left(X_1-\cfrac{1}{n}\sum^n\limits_{i=1}\right)=D\left(\cfrac{n-1}{n}X_1-\cfrac{1}{n}\sum^n\limits_{i=2}X_i\right)\\ &=\cfrac{(n-1)^2}{n^2}D(X_1)+\cfrac{1}{n^2}\sum^n\limits_{i=2}D(X_i)=\cfrac{n-1}{n}\sigma^2. \end{aligned}
D(Xi−X)=D(X1−n1i=1∑n)=D(nn−1X1−n1i=2∑nXi)=n2(n−1)2D(X1)+n21i=2∑nD(Xi)=nn−1σ2.
(这道题主要利用了统计量与估计量的关系求解)
466.设随机变量 X 1 , X 2 , ⋯ , X n ( n > 1 ) X_1,X_2,\cdots,X_n(n>1) X1,X2,⋯,Xn(n>1)独立同分布,且方差为 σ 2 > 0 \sigma^2>0 σ2>0,记 Y 1 = ∑ i = 2 n X i Y_1=\sum^n\limits_{i=2}X_i Y1=i=2∑nXi和 Y n = ∑ j = 1 n − 1 X j Y_n=\sum^{n-1}\limits_{j=1}X_j Yn=j=1∑n−1Xj,则 Y 1 Y_1 Y1和 Y n Y_n Yn的协方差 C o v ( Y 1 , Y n ) = \mathrm{Cov}(Y_1,Y_n)= Cov(Y1,Yn)=______.
解
C
o
v
(
Y
1
,
Y
n
)
=
C
o
v
(
∑
i
=
2
n
X
i
,
∑
j
=
1
n
−
1
X
j
)
=
∑
i
=
2
n
∑
j
=
1
n
−
1
C
o
v
(
X
i
,
X
j
)
=
∑
j
=
1
n
−
1
C
o
v
(
X
n
,
X
j
)
+
∑
i
=
2
n
−
1
∑
j
=
2
n
−
1
C
o
v
(
X
i
,
X
j
)
+
∑
i
=
2
n
C
o
v
(
X
i
,
X
1
)
=
∑
k
=
2
n
−
1
C
o
v
(
X
k
,
X
k
)
=
(
n
−
2
)
σ
2
.
\begin{aligned} \mathrm{Cov}(Y_1,Y_n)&=\mathrm{Cov}(\sum^n\limits_{i=2}X_i,\sum^{n-1}\limits_{j=1}X_j)=\sum^n\limits_{i=2}\sum^{n-1}\limits_{j=1}\mathrm{Cov}(X_i,X_j)\\ &=\sum^{n-1}\limits_{j=1}\mathrm{Cov}(X_n,X_j)+\sum^{n-1}\limits_{i=2}\sum^{n-1}\limits_{j=2}\mathrm{Cov}(X_i,X_j)+\sum^n\limits_{i=2}\mathrm{Cov}(X_i,X_1)\\ &=\sum^{n-1}\limits_{k=2}\mathrm{Cov}(X_k,X_k)=(n-2)\sigma^2. \end{aligned}
Cov(Y1,Yn)=Cov(i=2∑nXi,j=1∑n−1Xj)=i=2∑nj=1∑n−1Cov(Xi,Xj)=j=1∑n−1Cov(Xn,Xj)+i=2∑n−1j=2∑n−1Cov(Xi,Xj)+i=2∑nCov(Xi,X1)=k=2∑n−1Cov(Xk,Xk)=(n−2)σ2.
(这道题主要利用了协方差的性质求解)
470.设相互独立的随机变量 X 1 , X 2 , ⋯ , X n X_1,X_2,\cdots,X_n X1,X2,⋯,Xn均服从标准正态分布,记 X ‾ = 1 n ∑ i = 1 n X i \overline{X}=\cfrac{1}{n}\sum^n\limits_{i=1}X_i X=n1i=1∑nXi,则随机变量 X 1 − X ‾ X_1-\overline{X} X1−X服从的分布及参数为______.
解
X
1
−
X
‾
=
X
1
−
1
n
∑
i
=
1
n
X
i
=
X
1
−
1
n
X
1
−
1
n
∑
i
=
2
n
X
i
=
n
−
1
n
X
1
−
1
n
∑
i
=
1
n
X
i
.
X_1-\overline{X}=X_1-\cfrac{1}{n}\sum^n\limits_{i=1}X_i=X_1-\cfrac{1}{n}X_1-\cfrac{1}{n}\sum^n\limits_{i=2}X_i=\cfrac{n-1}{n}X_1-\cfrac{1}{n}\sum^n\limits_{i=1}X_i.
X1−X=X1−n1i=1∑nXi=X1−n1X1−n1i=2∑nXi=nn−1X1−n1i=1∑nXi.
所以
X
1
−
X
‾
X_1-\overline{X}
X1−X是相互独立的
n
n
n个标准正态分布随机变量的线性组合,
X
1
−
X
‾
X_1-\overline{X}
X1−X必服从正态分布
N
(
∗
,
∗
)
N(*,*)
N(∗,∗)。
E
(
X
1
−
X
‾
)
=
n
−
1
n
E
(
X
1
)
−
1
n
∑
i
=
1
n
E
(
X
i
)
=
0
,
D
(
X
1
−
X
‾
)
=
(
n
−
1
)
2
n
2
D
(
X
1
)
−
1
n
2
∑
i
=
1
n
D
(
X
i
)
=
(
n
−
1
)
2
n
2
+
n
−
1
n
2
=
n
2
−
n
n
2
,
X
1
−
X
‾
∼
N
(
0
,
n
−
1
n
)
.
E(X_1-\overline{X})=\cfrac{n-1}{n}E(X_1)-\cfrac{1}{n}\sum^n\limits_{i=1}E(X_i)=0,\\ D(X_1-\overline{X})=\cfrac{(n-1)^2}{n^2}D(X_1)-\cfrac{1}{n^2}\sum^n\limits_{i=1}D(X_i)=\cfrac{(n-1)^2}{n^2}+\cfrac{n-1}{n^2}=\cfrac{n^2-n}{n^2},\\ X_1-\overline{X}\sim N\left(0,\cfrac{n-1}{n}\right).
E(X1−X)=nn−1E(X1)−n1i=1∑nE(Xi)=0,D(X1−X)=n2(n−1)2D(X1)−n21i=1∑nD(Xi)=n2(n−1)2+n2n−1=n2n2−n,X1−X∼N(0,nn−1).
(这道题主要利用了正态分布的性质求解)
写在最后
如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
欢迎非商业转载,转载请注明出处。