A - 吉姆的运算式
思路:
直接用栈去模拟就好了。
#include<bits/stdc++.h>
typedef long long ll;
const int maxn = 1e5 + 10;
using namespace std;
int n, m, T, kase = 1;
char str[maxn];
char stk[maxn];
int num[maxn], len;
int cal(int &id) {
int flag = 1, sum = 0;
if(str[id] == '-') { flag = -1; id++; }
while(id < len && str[id] >= '0' && str[id] <= '9') { sum = sum * 10 + str[id] - '0'; id++; }
id--; return flag * sum;
}
int main() {
while(cin >> str) {
len = strlen(str);
int cnt1 = 0, cnt2 = 0, ans;
for(int i = 0; i < len; i++) {
if(str[i] == '(') {
stk[cnt1++] = '(';
} else if(str[i] == ')') {
ans = num[cnt2 - 1];
while(stk[cnt1 - 1] != '(') {
cnt1--; cnt2--;
}
cnt1--; cnt2--;
num[cnt2++] = ans;
} else if(str[i] == ',') {
stk[cnt1++] = ',';
} else {
int now = cal(i);
num[cnt2++] = now;
}
}
if(cnt2) ans = num[cnt2 - 1];
cout << ans << endl;
}
return 0;
}
B - 沃老师学生的成绩
思路:
写了好多版本啊。。 stringstring类型把尾数0去了直接比较小数部分都超时。。看别人的都不会啊, 果然还是lowlow。。。
把分数拆成整数和小数部分,然后哈希二分查找小数部分首次不同的位置,比较那里就好了。二分也超时几次。。。。
#include<bits/stdc++.h>
typedef long long ll;
const int maxn = 6e5 + 10;
const ll mod = 1e17 + 3;
using namespace std;
int n, m, T, kase = 1;
char s1[maxn], s2[maxn];
vector<int> sco[maxn];
struct P {
string name;
string score, score2;
void input() { cin >> name >> score; }
int solve(int idx) {
int l1 = 0, l2 = 0, flag = 0;
for(int i = 0; i < score.length(); i++) {
if(score[i] == '.') { flag = 1; continue; }
else if(flag) {
s2[l2++] = score[i];
} else {
s1[l1++] = score[i];
}
}
s2[l2++] = '0'; s2[l2] = 0; s1[l1] = 0;
int sum = 0; ll ds = 0;
for(int i = 0; i <l1; i++) sum = sum * 10 + s1[i] - '0';
while(l2 > 1 && s2[l2 - 1] == '0') l2--; s2[l2] = 0;
for(int i = 0; i < l2; i++) {
ds = ds * 10 + s2[i] - '0';
sco[idx].push_back(ds);
}
score2 = s2;
return sum;
}
} res[maxn];
int ans[maxn];
vector<int> vec[15];
int find_id(int x, int y, int r) {
int l = 0;
while(l < r) {
int mid = (l + r) >> 1;
if(sco[x][mid] == sco[y][mid]) l = mid + 1;
else r = mid;
}
return l;
}
bool cmp(int x, int y) {
int L1 = res[x].score2.length();
int L2 = res[y].score2.length();
int L = min(L1, L2);
int id = find_id(x, y, L);
if(id != L) return res[x].score2[id] > res[y].score2[id];
if(L1 != L2) return L1 > L2;
return res[x].name < res[y].name;
}
int main() {
while(cin >> n) {
for(int j = 0; j < 15; j++) vec[j].clear();
for(int i = 0; i < n; i++) {
res[i].input();
int k = res[i].solve(i);
vec[k].push_back(i);
}
for(int i = 0; i < 10; i++) sort(vec[i].begin(), vec[i].end(), cmp);
for(int i = 9; i >= 0; i--) {
for(int j = 0; j < vec[i].size(); j++) {
cout << res[vec[i][j]].name << " " << res[vec[i][j]].score <<endl;
}
}
}
return 0;
}
C - 吉姆的奇思妙想
思路:
感觉自己的思路好lowlow啊。。。。
看表达式,发现aiai对应的是一个前缀和值,bibi对应的是一个后缀和值,而且两个而且前缀后缀的组合发现最多有n+1n+1种情况,可以预处理出来,不妨这n+1n+1种前缀后缀的组合是(x0,y0),(x1,y1)...(xn,yn)(x0,y0),(x1,y1)...(xn,yn),发现可以对它们按照xx拍个序,一定是严格递增,yy严格递减,现在要求最小,即找出某个点(xk,yk)(xk,yk)满足这个EiEi最小,对这个式子处理一下:
y=−aibi⋅x+Eibiy=−aibi⋅x+Eibi
对bibi固定的话, 就要使得EibiEibi最小,因为查询可以离线,那么对于查询按照这个斜率从小到大排好序之后,那么就是斜率dpdp那样去维护了,维护一个下凸包就行了。
然后是注意各种判断溢出。。。。。。。。
#include<bits/stdc++.h>
//typedef long long ll;
typedef unsigned long long ull;
const int maxn = 3e5 + 10;
const ull max_ll = ((ull)1 << 63);
using namespace std;
struct P {
ull a, b;
int id;
void input(int i) { scanf("%llu %llu", &a, &b); id = i; }
bool operator < (P p) const { return a * p.b > b * p.a; }
} pot[maxn];
ull n, m, q, M, L;
ull deg[maxn], freq[maxn];
ull suml[maxn], sumr[maxn];
ull ans[maxn];
typedef pair<ull, ull> pa;
pa res[maxn];
vector<pa> vec;
bool solve_k(pa i, pa j, pa k) { ///i_j 是否 > j_k
ull dx_ij = i.first - j.first;
ull dy_ij = j.second - i.second;
ull dx_jk = j.first - k.first;
ull dy_jk = k.second - j.second;
double d1 = (double)dy_ij / dx_ij;
double d2 = (double)dy_jk / dx_jk;
return d1 < d2;
}
bool is_over(ull x, ull y) {
if(!y) return false;
ull c = max_ll / y;
if(c <= x) return true;
return false;
}
bool is_add_over(ull x, ull y) { return (max_ll - x <= y); }
int vis[maxn];
int main() {
while(scanf("%llu %llu", &M, &L) != EOF) {
n = L;
memset(vis, 0, sizeof vis);
memset(suml, 0, sizeof suml);
memset(sumr, 0, sizeof sumr);
vec.clear();
int id = -1;
for(int i = 1; i <= L; i++) scanf("%llu %llu", °[i], &freq[i]);
for(int i = 1; i <= L; i++) {
suml[i] = suml[i - 1] + deg[i] * deg[i] * freq[i];
int k = L - i + 1;
if((is_over(M, freq[k]) || is_add_over(sumr[k + 1], M * freq[k])) && id == -1) id = k; ///第二部分已经溢出
sumr[k] = sumr[k + 1] + M * freq[k];
}
int num = 0;
for(int i = 0; i < n + 1; i++) {
if(is_over(deg[i], deg[i])) break;
if(is_over(deg[i] * deg[i], freq[i])) break;
if(i && is_add_over(suml[i - 1], deg[i] * deg[i] * freq[i])) break;
if(i + 1 > id) res[num++] = pa(suml[i], sumr[i + 1]);
}
scanf("%llu", &q);
for(int i = 0; i < q; i++) pot[i].input(i);
sort(res, res + num);
sort(pot, pot + q);
for(int i = 0; i < num; i++) {
while(vec.size() >= 2 && !solve_k(res[i], vec[vec.size() - 1], vec[vec.size() - 2])) vec.pop_back(); ///维护下凸包
vec.push_back(res[i]);
}
int l = 0;
for(int i = 0; i < q; i++) {
while(l + 1 < vec.size()) {
pa now = vec[l];
pa nxt = vec[l + 1];
if(is_over(pot[i].b, now.second) || is_over(pot[i].a, now.first) || is_add_over(pot[i].b * now.second, pot[i].a * now.first)) { l++; continue; }
if(is_over(pot[i].b, nxt.second) || is_over(pot[i].a, nxt.first) || is_add_over(pot[i].b * nxt.second, pot[i].a * nxt.first)) break;
ull now_ans = pot[i].b * now.second + pot[i].a * now.first;
ull nxt_ans = pot[i].b * nxt.second + pot[i].a * nxt.first;
if(nxt_ans <= now_ans) l++;
else break;
}
pa nxt = vec[l];
ans[pot[i].id] = pot[i].b * nxt.second + pot[i].a * nxt.first;
}
for(int i = 0; i < q; i++) cout << ans[i] << endl;
}
return 0;
}