题意:
nn个点条边的无向图,现在要选择一个子图使得边的数量和点的数量的比值最大化。
思路:
参照胡伯涛的论文,用的求最大权闭合图的方法,注意精度问题, 二分一百次不行用l+10−5<rl+10−5<r来判断就过了。
//#include<bits/stdc++.h>
#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
#include<iostream>
#include<queue>
#include<cmath>
typedef long long ll;
const int maxn = 2e4 + 10;
const int INF = 1e9 + 10;
const double eps = 1e-6;
using namespace std;
struct st {
int to, re; double cap;
st(int t = 0, double c = 0, int r = 0) : to(t), cap(c), re(r) {}
};
int n, m, s, t;
vector<st> G[maxn];
int it[maxn], lv[maxn];
void add(int f, int t, double c) {
G[f].push_back(st(t, c, G[t].size()));
G[t].push_back(st(f, 0, G[f].size() - 1));
}
void bfs() {
memset(lv, -1, sizeof(lv));
queue<int> q;
lv[s] = 0;
q.push(s);
while(!q.empty()) {
int u = q.front(); q.pop();
for(int i = 0; i < G[u].size(); i++) {
st &e = G[u][i];
if(e.cap > eps && lv[e.to] < 0) {
lv[e.to] = lv[u] + 1;
q.push(e.to);
}
}
}
}
double dfs(int v, int t, double f) {
if(v == t) return f;
for(int &i = it[v]; i < G[v].size(); i++) {
st &e = G[v][i];
if(e.cap > eps && lv[v] < lv[e.to]) {
double d = dfs(e.to, t, min(f, e.cap));
if(d > eps) {
e.cap -= d;
G[e.to][e.re].cap += d;
return d;
}
}
}
return 0;
}
double maxflow() {
double f = 0;
while(1) {
bfs();
if(lv[t] < 0) return f;
memset(it, 0, sizeof(it));
double fl;
while((fl = dfs(s, t, INF)) > eps) f += fl;
}
}
int from[maxn], to[maxn], vis[maxn];
double build_graph(double mid) {
s = 0; t = n + m + 1;
double tot = m;
for(int i = 0; i <= n + m + 1; i++) G[i].clear();
for(int i = 1; i <= n; i++) add(i, t, mid);
for(int i = 1; i <= m; i++) {
add(s, i + n, 1);
add(i + n, from[i], INF);
add(i + n, to[i], INF);
}
double res = maxflow();
tot = tot - res;
return tot;
}
void dfs(int x) {
vis[x] = 1;
for(int i = 0; i < G[x].size(); i++) {
st now = G[x][i];
if(fabs(now.cap) > eps || vis[now.to]) continue;
dfs(now.to);
}
}
int main() {
while(scanf("%d %d", &n, &m) != EOF) {
for(int i = 1; i <= m; i++)
scanf("%d %d", &from[i], &to[i]);
if(!m) { puts("1\n1"); continue; }
double l = 0, r = m;
while(l + 1e-5 < r) {
double mid = (l + r) / 2;
double sol = build_graph(mid);
if(sol > eps) l = mid;
else r = mid;
}
vector<int> ans;
build_graph(l); bfs();
for(int i = 1; i <= n; i++) if(~lv[i]) ans.push_back(i);
cout << ans.size() << endl;
for(int i = 0; i < ans.size(); i++) cout << ans[i] << endl;
}
return 0;
}