Tensorflow2.6+CUDA11.2+CuDNN8.1安装

部署运行你感兴趣的模型镜像

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

报错分析"D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\Scripts\python.exe" "D:/2025College Student Innovation and Entrepreneurship Project/project/VGG/VGG.py" 显存动态分配成功! 2025-08-12 18:47:20.493861: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX AVX2 To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2025-08-12 18:47:20.614079: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1510] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 5563 MB memory: -> device: 0, name: NVIDIA GeForce RTX 4060 Laptop GPU, pci bus id: 0000:01:00.0, compute capability: 8.9 Model: "model" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_layer (InputLayer) [(128, 224, 224, 3)] 0 _________________________________________________________________ conv2d (Conv2D) (128, 224, 224, 64) 1792 _________________________________________________________________ max_pooling2d (MaxPooling2D) (128, 112, 112, 64) 0 _________________________________________________________________ conv2d_1 (Conv2D) (128, 112, 112, 128) 73856 _________________________________________________________________ max_pooling2d_1 (MaxPooling2 (128, 56, 56, 128) 0 _________________________________________________________________ conv2d_2 (Conv2D) (128, 56, 56, 256) 295168 _________________________________________________________________ conv2d_3 (Conv2D) (128, 56, 56, 256) 590080 _________________________________________________________________ max_pooling2d_2 (MaxPooling2 (128, 28, 28, 256) 0 _________________________________________________________________ conv2d_4 (Conv2D) (128, 28, 28, 512) 1180160 _________________________________________________________________ conv2d_5 (Conv2D) (128, 28, 28, 512) 2359808 _________________________________________________________________ max_pooling2d_3 (MaxPooling2 (128, 14, 14, 512) 0 _________________________________________________________________ conv2d_6 (Conv2D) (128, 14, 14, 512) 2359808 _________________________________________________________________ conv2d_7 (Conv2D) (128, 14, 14, 512) 2359808 _________________________________________________________________ max_pooling2d_4 (MaxPooling2 (128, 7, 7, 512) 0 _________________________________________________________________ flatten (Flatten) (128, 25088) 0 _________________________________________________________________ dense (Dense) (128, 4096) 102764544 _________________________________________________________________ dropout (Dropout) (128, 4096) 0 _________________________________________________________________ dense_1 (Dense) (128, 4096) 16781312 _________________________________________________________________ dropout_1 (Dropout) (128, 4096) 0 _________________________________________________________________ dense_2 (Dense) (128, 1000) 4097000 ================================================================= Total params: 132,863,336 Trainable params: 132,863,336 Non-trainable params: 0 _________________________________________________________________ Epoch 1/100 Traceback (most recent call last): File "D:/2025College Student Innovation and Entrepreneurship Project/project/VGG/VGG.py", line 1011, in <module> callbacks=[reduce_lr] # 添加回调函数 File "D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\keras\engine\training.py", line 1184, in fit tmp_logs = self.train_function(iterator) File "D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\eager\def_function.py", line 885, in __call__ result = self._call(*args, **kwds) File "D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\eager\def_function.py", line 933, in _call self._initialize(args, kwds, add_initializers_to=initializers) File "D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\eager\def_function.py", line 760, in _initialize *args, **kwds)) File "D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\eager\function.py", line 3066, in _get_concrete_function_internal_garbage_collected graph_function, _ = self._maybe_define_function(args, kwargs) File "D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\eager\function.py", line 3463, in _maybe_define_function graph_function = self._create_graph_function(args, kwargs) File "D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\eager\function.py", line 3308, in _create_graph_function capture_by_value=self._capture_by_value), File "D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\framework\func_graph.py", line 1007, in func_graph_from_py_func func_outputs = python_func(*func_args, **func_kwargs) File "D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\eager\def_function.py", line 668, in wrapped_fn out = weak_wrapped_fn().__wrapped__(*args, **kwds) File "D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\framework\func_graph.py", line 994, in wrapper raise e.ag_error_metadata.to_exception(e) ValueError: in user code: D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\keras\engine\training.py:853 train_function * return step_function(self, iterator) D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\keras\engine\training.py:842 step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,)) D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:1286 run return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs) D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:2849 call_for_each_replica return self._call_for_each_replica(fn, args, kwargs) D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:3632 _call_for_each_replica return fn(*args, **kwargs) D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\keras\engine\training.py:835 run_step ** outputs = model.train_step(data) D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\keras\engine\training.py:789 train_step y, y_pred, sample_weight, regularization_losses=self.losses) D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\keras\engine\compile_utils.py:184 __call__ self.build(y_pred) D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\keras\engine\compile_utils.py:133 build self._losses = tf.nest.map_structure(self._get_loss_object, self._losses) D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\util\nest.py:869 map_structure structure[0], [func(*x) for x in entries], D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\util\nest.py:869 <listcomp> structure[0], [func(*x) for x in entries], D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\keras\engine\compile_utils.py:273 _get_loss_object loss = losses_mod.get(loss) D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\keras\losses.py:2136 get return deserialize(identifier) D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\keras\losses.py:2095 deserialize printable_module_name='loss function') D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\keras\utils\generic_utils.py:709 deserialize_keras_object .format(printable_module_name, object_name)) ValueError: Unknown loss function: sparse_softmax_cross_entropy_with_logits. Please ensure this object is passed to the `custom_objects` argument. See https://www.tensorflow.org/guide/keras/save_and_serialize#registering_the_custom_object for details. Process finished with exit code 1
08-13
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值