color_split

该代码定义了一个字典来存储颜色分量的上下限,并提供了获取颜色列表和根据帧获取颜色的函数。主要涉及HSV颜色空间,用于识别和处理不同颜色的图像,包括黑色、浅灰、深灰、白色、红色、红色2、橙色、黄色、绿色、青色、蓝色和紫色。
import cv2
import numpy as np
import collections


# 定义字典存放颜色分量上下限
# 例如:{颜色: [min分量, max分量]}
# {'red': [array([160,  43,  46]), array([179, 255, 255])]}

def getColorList():
    dict = collections.defaultdict(list)

    # 黑色
    lower_black = np.array([0, 0, 0])
    upper_black = np.array([180, 255, 46])
    color_list = []
    color_list.append(lower_black)
    color_list.append(upper_black)
    dict['black'] = color_list

    # #浅灰
    lower_gray = np.array([0, 0, 46])
    upper_gray = np.array([180, 43, 255])
    color_list = []
    color_list.append(lower_gray)
    color_list.append(upper_gray)
    dict['gray']=color_list

    # #深灰
    lower_gray = np.array([0, 0, 46])
    upper_gray = np.array([180, 43, 150])
    color_list = []
    color_list.append(lower_gray)
    color_list.append(upper_gray)
    dict['gray_hard'] = color_list

    # 白色******
    lower_white = np.array([0, 0, 130])
    upper_white = np.array([180, 30, 255])
    color_list = []
    color_list.append(lower_white)
    color_list.append(upper_white)
    dict['white'] = color_list

    # 红色
    lower_red = np.array([156, 43, 46])
    upper_red = np.array([180, 255, 255])
    color_list = []
    color_list.append(lower_red)
    color_list.append(upper_red)
    dict['red'] = color_list

    # 红色2
    lower_red = np.array([0, 43, 46])
    upper_red = np.array([10, 255, 255])
    color_list = []
    color_list.append(lower_red)
    color_list.append(upper_red)
    dict['red2'] = color_list

    # 橙色
    lower_orange = np.array([11, 43, 46])
    upper_orange = np.array([25, 255, 255])
    color_list = []
    color_list.append(lower_orange)
    color_list.append(upper_orange)
    dict['orange'] = color_list

    # 黄色
    lower_yellow = np.array([26, 43, 46])
    upper_yellow = np.array([34, 255, 255])
    color_list = []
    color_list.append(lower_yellow)
    color_list.append(upper_yellow)
    dict['yellow'] = color_list

    # 绿色
    lower_green = np.array([35, 43, 46])
    upper_green = np.array([77, 255, 255])
    color_list = []
    color_list.append(lower_green)
    color_list.append(upper_green)
    dict['green'] = color_list

    # 青色
    lower_cyan = np.array([78, 43, 46])
    upper_cyan = np.array([99, 255, 255])
    color_list = []
    color_list.append(lower_cyan)
    color_list.append(upper_cyan)
    dict['cyan'] = color_list

    # 蓝色
    lower_blue = np.array([100, 43, 46])
    upper_blue = np.array([124, 255, 255])
    color_list = []
    color_list.append(lower_blue)
    color_list.append(upper_blue)
    dict['blue'] = color_list

    # 紫色
    lower_purple = np.array([125, 43, 46])
    upper_purple = np.array([155, 255, 255])
    color_list = []
    color_list.append(lower_purple)
    color_list.append(upper_purple)
    dict['purple'] = color_list

    return dict


def get_color(frame):
    print('go in get_color')
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    maxsum = -100
    color = None
    color_dict = getColorList()
    color_rates = []
    for d in color_dict:
        # try:
        print(d)
        mask = cv2.inRange(hsv, color_dict[d][0], color_dict[d][1])
        cv2.imwrite(d + '.jpg', mask)
        binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1]
        binary = cv2.dilate(binary, None, iterations=2)
        cnts, hiera = cv2.findContours(binary.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        sum = 0
        color_rates.append(np.sum(mask==255)/(mask.shape[0]*mask.shape[1]))
        for c in cnts:
            sum += cv2.contourArea(c)
        if sum > maxsum:
            maxsum = sum
            color = d

    return max(color_rates)


if __name__ == '__main__':
    filename = r'123.png'
    frame = cv2.imread(filename)
    get_color(frame)
# # set red thresh
# # lower_blue=np.array([156,43,46])
# # upper_blue=np.array([180,255,255])
#
# lower_blue = np.array([26, 43, 46])
# upper_blue = np.array([34, 255, 255])
#
# img = cv2.imread(r'E:\PycharmProject\work\V4V5X_combine\inference_res_928test\yolov5s_pt\res2\crops\head\4ef5d71f-0765-4825-a83c-d51e002123ed2.jpg')
#
# # get a frame and show
#
# frame = img
#
# cv2.imshow('Capture', frame)
#
# # change to hsv model
# hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
#
# # get mask
# mask = cv2.inRange(hsv, lower_blue, upper_blue)
# cv2.imshow('Mask', mask)
#
# # detect red
# res = cv2.bitwise_and(frame, frame, mask=mask)
# cv2.imshow('Result', res)
#
# cv2.waitKey(0)
# cv2.destroyAllWindows()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值