论文阅读 BERT GPT - transformer在NLP领域的延伸

不会写的很详细,只是为了帮助我理解在CV领域transformer的拓展

1 摘要

1.1 BERT - 核心

双向 编码器 加上mask做完形填空超大模型无监督预训练 需要整个模型作为pretrain weight到下游任务做fintune

1.2 GPT - 核心

自回归 解码器 无需训练 只需Prompt

2 模型架构

2.1 概览

在这里插入图片描述
在这里插入图片描述

3 区别

3.1 finetune和prompt

BERT需要全部参数进行训练
GPT不需要训练即可完成下游任务
在这里插入图片描述

3.2 transformer及训练

BERT使用双向的编码器

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值