SVM决策边界
一、线性可分
w = clf.coef_[0]
#调用coef_取得w值
a = -w[0] / w[1]
xx = np.linspace(-2, 2) # x轴范围
yy = a * xx - (clf.intercept_[0] / w[1])
b = clf.support_vectors_[0]
yy_down = a * xx + (b[1] - a * b[0])
b = clf.support_vectors_[-1]
yy_up = a * xx + (b[1] - a * b[0])
#得到分界线上方和下方与之平行的边际直线的xx和yy后面一并画出
plt.figure()
plt.plot(xx, yy, 'g-')
plt.plot(xx, yy_down, 'g--')
plt.plot(xx, yy_up, 'g--')
plt.ylim(0.75,1.1) # y轴范围
def plot_svc_decision_function(model,ax=None):
if ax is None:
ax