complete - 待补充

本文详细介绍如何使用Python进行高效的数据分析,包括数据清洗、预处理、可视化和建模等关键步骤。通过实际案例,读者可以学习到Python中pandas、numpy和matplotlib等库的运用。

complete(province_confirmedCount,nesting(countryName,exactDate))

/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "tim.h" #include "usart.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "stdio.h" #include "stdint.h" #include "string.h" #include "math.h" // 添加数学库用于浮点运算 #include "oled.h" #include "ds18b20.h" #include "delay.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define CURRENT_SENSOR_ADDR 0x02 #define CURRENT_READ_CMD_LEN 8 /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ uint8_t uart3_rx_buffer[9]; // 存储9个字节 uint8_t uart3_rx_index = 0; // 当前接收索引 uint8_t uart3_receive_complete = 0; // 接收完成标志 uint8_t uart3_rx_byte; // 单字节临时变量 //电流传感器相关变量 uint8_t current_read_cmd[CURRENT_READ_CMD_LEN] = {0x02, 0x03, 0x00, 0x56, 0x00, 0x01, 0x64, 0x29}; uint8_t current_rx_buffer[7] = {0}; // 电流传感器返回数据缓冲区 uint8_t current_rx_index = 0; uint8_t current_receive_complete = 0; float current_value = 0.0f; char current_str[32] = "Current: --.- A"; uint32_t last_current_read_time = 0; #define FRAME_SIZE 9 // 帧长度 = 帧头(1) + 数据(7) + 校验(1) = 9 uint8_t rx_byte; uint8_t rx_buffer[FRAME_SIZE] = {0}; uint8_t rx_index = 0; uint8_t frame_received = 0; uint8_t start_received = 0; // 是否接收到帧头FF float display_value = 0.0f; char display_str[50] = "Waiting for data..."; float current_temperature = 0.0f; uint8_t temp_update_flag = 0; // 标志位,表示需要刷新显示 float gas_concentration_uart3 = 0.0f; float gas_concentration_uart1 = 0.0f; uint8_t gas_update_flag = 0; // 分辨率映射表 const float res_table[3] = {1.0f, 0.1f, 0.01f}; char gas_str_uart3[32] = "VOC: --.- ppm"; char gas_str_uart1[32] = "CO : --.- ppm"; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ void Display_Temperature(uint8_t x, uint8_t y) { static float last_temp = -999.0f; static uint32_t last_update = 0; float current_temp; uint32_t now = HAL_GetTick(); // if (now - last_update < 500) { // return; // } if (DS18B20_Init() == 0) { current_temp = DS18B20_GetTemperture(); } else { current_temp = 999.9f; } // if (fabs(current_temp - last_temp) < 0.01f) { // last_update = now; // return; // } char temp_str[20]; if (current_temp == 999.9f) { strcpy(temp_str, "Err"); } else { sprintf(temp_str, "%.2f'C", current_temp); } // 标题 + 温度 OLED_ShowString(x, y, (uint8_t*)temp_str); last_temp = current_temp; last_update = now; } uint8_t update_display_flag = 0; // 显示刷新标志 void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { if (htim->Instance == TIM2) { OLED_Clear(); // OLED_ShowCHinese(0, 0, 0); // 标题汉字“温” // OLED_ShowCHinese(17, 0, 1); // 汉字“度” OLED_ShowString(0,0,(uint8_t*)"temp:"); Display_Temperature(38, 0); // 第一行:温度 OLED_ShowString(0, 1, (uint8_t*)gas_str_uart3); // 第二行:CO 浓度 OLED_ShowString(0, 2, (uint8_t*)gas_str_uart1); // 第三行:VOC 浓度 OLED_ShowString(0, 3, (uint8_t*)current_str); // 第四行:电流值 } if (htim->Instance == TIM6) { // 每秒发送一次电流读取命令 HAL_UART_Transmit(&huart1, current_read_cmd, CURRENT_READ_CMD_LEN, 100); } } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_USART1_UART_Init(); // MX_USART3_UART_Init(); MX_TIM3_Init(); MX_TIM2_Init(); MX_TIM6_Init(); /* USER CODE BEGIN 2 */ delay_init(); OLED_Init(); HAL_TIM_Base_Start_IT(&htim2); // 启动 TIM2 中断 HAL_TIM_Base_Start_IT(&htim6); // 启动 TIM6c 中断 HAL_UART_Receive_IT(&huart1, &rx_byte, 1); HAL_UART_Receive_IT(&huart3, &uart3_rx_byte, 1); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { HAL_UART_Transmit(&huart1, current_read_cmd, CURRENT_READ_CMD_LEN, 10); /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { if (huart->Instance == USART3) { // 原有的USART3气体传感器代码保持不变 uart3_rx_buffer[uart3_rx_index++] = uart3_rx_byte; if (uart3_rx_index >= 9) { uint16_t raw_value = (uart3_rx_buffer[2] << 8) | uart3_rx_buffer[3]; gas_concentration_uart3 = raw_value * 0.1f; sprintf(gas_str_uart3, "VOC:%.1f ppm", gas_concentration_uart3); uart3_receive_complete = 1; uart3_rx_index = 0; gas_update_flag = 1; } HAL_UART_Receive_IT(&huart3, &uart3_rx_byte, 1); } if (huart->Instance == USART1) { // 检查是否是电流传感器数据(地址为0x02) static uint8_t expecting_current_data = 0; if (!expecting_current_data && !start_received) { // 检查是否是电流传感器响应帧头(地址0x02,功能码0x03) if (rx_byte == 0x02) { expecting_current_data = 1; current_rx_index = 0; current_rx_buffer[current_rx_index++] = rx_byte; } else if (rx_byte == 0xFF) // 气体传感器帧头 { start_received = 1; rx_index = 1; rx_buffer[0] = rx_byte; } } else if (expecting_current_data) { // 接收电流传感器数据 current_rx_buffer[current_rx_index++] = rx_byte; if (current_rx_index >= 7) // 电流传感器返回7个字节 { // 验证CRC(简化处理,实际应该计算CRC) // 提取电流数据(第3、4字节) uint16_t raw_current = (current_rx_buffer[3] << 8) | current_rx_buffer[4]; // 根据说明书公式计算实际电流值 // 这里需要根据您的电流传感器量程修改A0和Af值 float A0 = 0.0f; // 电流下限,根据您的传感器修改 float Af = 250.0f; // 电流上限,根据您的传感器修改 current_value = raw_current * (Af - A0) / 10000.0f - fabs(A0); sprintf(current_str, "Current: %.2f A", current_value); current_receive_complete = 1; expecting_current_data = 0; current_rx_index = 0; } } else if (start_received) { // 原有的气体传感器数据处理代码 rx_buffer[rx_index++] = rx_byte; if (rx_index >= FRAME_SIZE) { uint8_t calculated_checksum = 0; for (int i = 1; i < FRAME_SIZE - 1; i++) { calculated_checksum += rx_buffer[i]; } calculated_checksum = ~calculated_checksum + 1; if (calculated_checksum == rx_buffer[FRAME_SIZE - 1]) { uint8_t res_index = rx_buffer[2]; float resolution = (res_index <= 2) ? res_table[res_index] : 0.01f; uint16_t raw_value = (rx_buffer[3] << 8) | rx_buffer[4]; gas_concentration_uart1 = raw_value * resolution; sprintf(gas_str_uart1, "CO :%.2f ppm", gas_concentration_uart1); frame_received = 1; gas_update_flag = 1; } start_received = 0; rx_index = 0; } } HAL_UART_Receive_IT(&huart1, &rx_byte, 1); } } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ 将电流传感器部分的校验机制弄得严格一些,确保收到的前四帧是02 03 00 56才接收,然后带上最后两位的CRC校验(先低后高位)
最新发布
10-17
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值