To the Max
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 43888 | Accepted: 23267 |
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle.
In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace
(spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will
be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15 思路:都知道最大子序列和的求法,这道题就是对最大子序列有一个改变,定义一个sum数组记录前几行数组的和 例如: 1 2 3 -1 4 6 -2 5 那么他们的sum值为:5 8 1 4,然后就按照求最大子序列和的方法对sum数组进行遍历 然后依次往下推,在求最大子矩阵和的时候,还要考虑到减去上面几行的情况 详情见代码: ac代码: 16ms#include<stdio.h> #include<string.h> #include<math.h> #include<iostream> #include<algorithm> #define MAX(a,b) a>b?a:b #define MAXN 1010 #define INF 0xfffffff using namespace std; int num[MAXN][MAXN]; int sum[MAXN][MAXN]; int main() { int i,j,k,q; int n; while(scanf("%d",&n)!=EOF) { for(i=0;i<n;i++) { for(j=0;j<n;j++) scanf("%d",&num[i][j]); } memset(sum,0,sizeof(sum));//初始化sum数组 int max=0; for(i=0;i<n;i++) { for(j=0;j<n;j++) { sum[i][j]=i==0?num[i][j]:(sum[i-1][j]+num[i][j]);//第一行的sum值为其本身,当然这也可以在输入的同时更新 } for(k=-1;k<i;k++)//考虑减去前几行 { int ans=0; if(k>=0) { for(q=0;q<n;q++) { ans+=(sum[i][q]-sum[k][q]); if(ans<0) { ans=0; } else { max=MAX(max,ans); } } } else//一行都不减那就是其本身 { for(q=0;q<n;q++) { ans+=sum[i][q]; if(ans<0) { ans=0; } else { max=MAX(max,ans); } } } } } printf("%d\n",max); } return 0; }
将sum的赋值加在输入中
0ms:#include<stdio.h> #include<string.h> #include<math.h> #include<iostream> #include<algorithm> #define MAX(a,b) a>b?a:b #define MAXN 1010 #define INF 0xfffffff using namespace std; int num[MAXN][MAXN]; int sum[MAXN][MAXN]; int main() { int i,j,k,q; int n; while(scanf("%d",&n)!=EOF) { memset(sum,0,sizeof(sum)); for(i=0;i<n;i++) { for(j=0;j<n;j++) { scanf("%d",&num[i][j]); sum[i][j]=i==0?num[i][j]:(sum[i-1][j]+num[i][j]); } } int max=0; for(i=0;i<n;i++) { for(k=-1;k<i;k++) { int ans=0; if(k>=0) { for(q=0;q<n;q++) { ans+=(sum[i][q]-sum[k][q]); if(ans<0) { ans=0; } else { max=MAX(max,ans); } } } else { for(q=0;q<n;q++) { ans+=sum[i][q]; if(ans<0) { ans=0; } else { max=MAX(max,ans); } } } } } printf("%d\n",max); } return 0; }