/**
To the Max
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 35771 Accepted: 18784
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
E:最大子矩阵查看提交统计提问总时间限制: 1000ms内存限制: 65536kB
描述
已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵。
比如,如下4 * 4的矩阵
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
的最大子矩阵是
9 2
-4 1
-1 8
这个子矩阵的大小是15。
输入
输入是一个N * N的矩阵。输入的第一行给出N (0 < N <= 100)。再后面的若干行中,依次(首先从左到右给出第一行的N个整数,
再从左到右给出第二行的N个整数……)给出矩阵中的N2个整数,整数之间由空白字符分隔(空格或者空行)。已知矩阵中整数的范
围都在[-127, 127]。
输出
输出最大子矩阵的大小。
样例输入
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2样例输出
15
*/
#include <cstdio>
using namespace std;
int n = 0;
int matrix[105][105] = {0};
int msum(int a, int b)
{
int deal[105] = {0}, ms[105] = {0};
for(int i = 0; i < n; ++i)
for(int j = a; j <= b; ++j)
deal[i] += matrix[j][i];
ms[0] = deal[0];
for(int i = 1; i < n; ++i)
ms[i] = (ms[i - 1] + deal[i] > deal[i])?ms[i - 1] + deal[i]:deal[i];
int ma = ms[0];
for(int i = 0; i < n; ++i)
if(ma < ms[i]) ma = ms[i];
return ma;
}
int main()
{
scanf("%d", &n);
for(int i = 0; i < n; ++i)
for(int j = 0; j < n; ++j)
scanf("%d", &matrix[i][j]);
int m = -100000000;
for(int i = 0; i < n; ++i)
for(int j = i; j < n; ++j)
{
int tep = msum(i, j);
if(m < tep) m = tep;
}
printf("%d\n", m);
}
转载于:https://my.oschina.net/locusxt/blog/133654